Rodents are considered one of the most successful groups of mammals, so it’s not surprising that the northeast hosts many different kinds. They range in size from the tiny woodland vole (weighing an ounce or less) to the beaver (50 pounds or more). The small ones dominate, both in abundance and in their potential to confuse. Most of these little creatures are active in winter, so it’s a perfect time to get a handle on their distinguishing features.
The photo below shows a set of prints made by a red squirrel bounding from left to right. The five-toed rear tracks are nearly even with each other and set widely, their three middle toes parallel and their inner and outer toes diverging. The four-toed front tracks are set more narrowly and staggered, and their four toes are slightly splayed. Behind the toe impressions, the middle pads of both front and rear feet (analogous to the bumps over the knuckle joints in your palm and the ball of your foot) appear as clear indentations. The heel pads of the front tracks (like the heel of your hand) show in both right and left front prints, and the heel area of the right rear track (analogous to the heel of your foot) is a smooth elongation behind the middle pads.
Here’s a chipmunk group of four, with the direction of travel this time toward the top. The left front and rear tracks are partly superimposed, but the similarity to the tracks in the first photo is plain to see. This is what I call the rodent foot plan, and once you absorb it you’ll recognize it in other small rodents, including squirrels, chipmunks, mice, and voles.
But there are some variations which–if available–can be important in pinpointing an identification. The photo below came from the bounding trail of a southern flying squirrel, an animal similar to a chipmunk in body size (although lighter in weight). Compare the middle pads in the right rear tracks (the farthest to the right in each photo): in the chipmunk they’re well separated and form a sharp curve. The middle pads of the flying squirrel are closer together and form a gentle crescent.
If your reaction to that is, ‘you’ve got to be kidding!’ you’re not far off base. It’s a real difference, but snow conditions are rarely perfect enough to see that kind of detail. So how often can we be sure which small rodent made the tracks we’re seeing? Quite often, it turns out, because we have two additional diagnostic tools: trail width and habitual movement patterns. The tracks in the photo below, a white-footed mouse bounding toward the upper right and a gray squirrel bounding toward the lower right, are similar arrangements but are vastly different in size. In this case it’s easy to know which is which, but for less obvious differences, such as red squirrel versus gray squirrel, measurement of the overall width of the pattern, known as the trail width, can really help.
To measure the trail width of a bounding animal, imagine or mark lines parallel to the direction of travel which touch the outermost parts of the two rear tracks. Below you’ll see the same photo with lines delimiting the trail widths. Next, measure the distance between the two lines. The nice thing about this is that the trail widths of our most common small rodents fall into a simple size progression. In inches, trail widths for white-footed and deer mice measure 1 1/4-1 3/4; chipmunks, 1/1/2-2 3/4; red squirrels, 3-4 1/2; and gray squirrels, 4-6. At 1 3/4-3 inches the trail width for southern flying squirrels is similar to that of chipmunks, and northern flying squirrels, at 2 3/4-4 1/4 inches, overlap on the low side with red squirrels. Although trail width can be determined for any gait, the bounding gait so common in small rodents is especially suited to this measurement.
Habitual movement patterns are another useful tool for identifying small rodents. In the next photo a gray squirrel bounded at a good clip from bottom to top, leaving groups of four prints separated by relatively long distances. In each group of four the landing tracks of the smaller front feet are behind the take-off tracks of the larger rear feet. Bounding trails of red squirrels and chipmunks are similar in overall proportions. It’s not that these animals always make long leaps. If they’re moving slowly the distances between the groups of four can be smaller, and the hind feet may not pass as far ahead of the front feet. Compare the arrangement of the gray squirrel prints in the previous photo with that of the slower moving red squirrel in the opening illustration. The point is that the habitual travelling movement of these animals creates trails with characteristic four-track groupings and relatively large spaces between groups.
Compare the pattern above to the next photo, the trail of a southern flying squirrel, bounding from lower right to upper left. In this trail the larger rear prints are behind the smaller front ones, and the distance between the groups of four is smaller. In the trails of northern flying squirrels the rear tracks are often ahead of the front, but both species of flying squirrels have sacrificed strength for lightness and aerodynamic design and are unable to match the long leaps of their non-gliding relatives.
Snow depth can affect the foot placement of bounding rodents. To the white-footed mouse that made the tracks in the photo below the snow was fairly deep, so the groups of four are reduced to sets of two, each of the paired impressions made by sequential impacts of front and rear feet from the same side. All of the rodents I’ve been discussing do this when deep snow makes it more energy efficient. But even in these reduced patterns trail width can still be measured, as long as we make sure we’re looking at the actual tracks and not the larger openings around them. And like squirrels and chipmunks, mice make shorter leaps when moving less energetically. An example of mouse trails with consistently shorter leaps can be seen in the opening photo of last month’s article.
Meadow voles are chunkier and have shorter legs than white-footed mice, so they can’t make long leaps, but their trails are roughly as wide as those of mice. It’s not always easy to tell whether a bounding trail with short leaps was made by a vole or a mouse, but if the trail goes on long enough differences usually show up. A vole’s foot placement is rarely as even and foursquare as that of a mouse, and voles tend to make frequent shifts in gaits. It’s not unusual for an individual vole trail to vary among lopes, bounds, trots, overstep walks, and scurrying gaits that are difficult to categorize. In the next photo there’s a partly roofed vole tunnel meandering between the lower right and the top center. A vole traveled from the left side of the frame toward the tunnel in a bounding gait, with typical short leaps and uneven foot placement. The thin line in the center of the trail was made by the tail.
If you’ve made it this far in this treatise, you may feel like your brain is reeling. Believe it or not, I had to leave out many details, and I haven’t even addressed the issue of distinguishing small rodents from other small mammals. The important thing is to get started. Every time you work through a small rodent puzzle you’ll learn more. So be patient and persistent, and enjoy the eureka! moments when a few puzzle pieces fit together to form part of the larger picture.
Linda,
Again thanks for sharing the intricacies of tracking. Makes me wonder what these critters are doing underneath the 12-42 inches of snow that fell last week in the Southern tier.
Karel
That was a very clear description of rodent tracks with such good photos. And just in time for all this snow. Thank you.
Linda,
Thank you for this. Pam Landry and I have been trying to sort out the “wee beasties”, emailing photos with our thoughts. More of this would be welcome. This year is my push to focus on the mice and voles and get a better handle on it. And any hints about photography of snow tracks. I am constantly trying to get it right.
My best to you.
Pat