Deer Browse

Signs of spring are all around us, but there are still some interesting discoveries to be made about the past season. Early spring is a perfect time to learn about the winter diet of white-tailed deer. We may think that deer are basically grazers as we see them placidly feeding in fields, like cows and horses. But that would be wrong. Cows, horses–and bison, to include an example of a wild species–are strict grazers and consume grasses, forbs, and other non-woody plants year-round. Deer are browsers rather than grazers. Although they feed on the same kinds of low-growing vegetation as grazers during the growing season, in winter they switch to the twigs, buds, and bark of woody plants. The deer you see in the lead photo (not my shot, but I couldn’t find a good attribution for it) are eating the twigs of a cedar sapling.

Deer do not have upper incisors, so in order to remove a twig they clamp it between their lower incisors and their tough upper palate. A jerk of the head suffices to yank the twig off, enabling it to be macerated by the molars and then swallowed. Rough breaks like those shown on apple in the photo below indicate that deer were feeding on the small twigs.

This contrasts with the sign left by rabbits and hares, which also depend on woody browse for winter food. Rabbits have both upper and lower incisors, and they make sharp, angled cuts like the ones shown in the next photo of multiflora rose.

The browsing preferences of deer vary in different regions. Some of their favorites in the northeast are sugar maple, ash, dogwood, striped maple, northern white cedar, and hemlock. In the next photo you see a sugar maple branch that was browsed by deer. The animals are not equipped to chew on larger branches, so they limit their browsing to the small twigs and buds at the branch tips. In mature forests these only become available if trees or large branches fall, which is exactly what happened in this case.

Hungry deer will eat everything they can reach, and unrelenting feeding often leaves browse lines like the one on northern white cedar in the photo below. This doesn’t affect the overall health of the stand, but browsing can have adverse effects on the growth of smaller trees.

The ash seedlings in the next photo show the excessive lateral branching patterns that result from heavy browsing. During each growing season the young trees form new twigs and buds, but each winter the new growth is eaten by hungry deer. The stunted trees are never able to outgrow the reach of the deer and eventually die.

Deer found a hemlock sapling at the edge of a field, and you see the result in the next photo. It’s hard to see the hemlock against the background because so many of the small twigs have been eaten, but if you follow the main stem up from the bottom center of the photo you’ll see how much foliage is missing.

Overbrowsing makes a difference in the appearance of forests. In the next photo you see a woodland that has been heavily impacted by winter deer feeding. The lack of understory trees makes it easier to walk through this kind of forest, and its cleaner appearance may be more appealing. But this forest is in trouble.

In the next photo you see a much healthier woodland. The spaces between the large trees are filled with young and medium-sized saplings, and these are the ones that are ready to fill gaps when larger trees die or fall.

Without a multi-aged understory, forests have limited ability to regenerate. When large trees die, there are no young trees ready to fill in the gaps. It’s true that there are seeds in the soil that will germinate quickly once openings are formed, but the delay in regrowth may allow invasive species to get a foothold. Signs of deer browsing tell us much more than the mere presence of hungry animals. There are larger lessons to be learned, and nature is ready to share them if we are willing to pay attention.

Where Do The Bones Go?

Have you ever wondered what happens to all the bones? Animals are dying all the time, and when they die their soft tissues are eaten by predators and scavengers, picked off by birds, ingested by insects, and decomposed by microorganisms. This leaves just bones, like those of a rabbit shown below. But we don’t see bones littering the landscape, so what happens to them?

First let’s consider small animals. When a tiny creature such as a vole is killed by a predator, the catch is swallowed whole and the bones are crushed and partly assimilated. Undigested bone fragments are eliminated in scat (or pellets if the hunter was a hawk or owl). You can see small bone fragments in the red fox scat shown below–there’s also plant material, tiny hairs, and what appears to be a whisker. Scat like this will eventually be weathered and dispersed into the soil. Even if a small animal isn’t completely consumed immediately, its remains will be broken down, dispersed, and probably hidden from our view by its surroundings.

But what of larger animals whose carcasses would be more obvious? Deer immediately come to mind, but the question also applies to bears, coyotes, woodchucks, raccoons, and other similar sized animals. We do occasionally see the remains of recently deceased animals, like the deer carcass in the next photo, but why don’t we see piles of old bones lying around everywhere?

The answer has to do with the nutritional value of bones. The deer femur in the next photo was cracked open by a coyote to get at the marrow. (I say coyote because the only other animal in our region which is powerful enough to break a deer leg bone would be a bear, and there were no bears in the area where the bone was found.) Toward the upper end of the larger piece you can see some striations which were probably made by the coyote’s molars as it worked at the bone.

We sometimes see evidence of the utilization of bones this way in scat. The coyote scat in the next image contains an abundance of deer bone fragments and deer hair. The hair would have cushioned the sharp bone edges and prevented injury to the animal’s digestive system. It wouldn’t take long for bone fragments like these to be hidden in the upper layers of soil.

In addition to marrow, bones contain calcium, phosphorus, and other minerals which may be lacking in the diets of wild animals. Mineral deficiencies are especially likely for herbivores. Many animals supplement their nutrient intake by chewing on bones, and they usually choose less daunting ones such as scapulas, ribs, and vertebrae. The bones of birds, reptiles, and smaller mammals such as rabbits can also be utilized by less powerful animals. Even deer have been observed chewing on bones. This kind of chewing may not leave obvious signs–just ragged edges, missing ends, or random gouges.

Rodents also gnaw on bones, and the evidence of their activity is often more conspicuous. In the next photo you see a segment of deer leg bone lodged on a midden at the base of a Norway spruce tree. Middens, piles of discarded cone cores and scales, are created when a red squirrel repeatedly uses a favorite perch to feed on cones. The red squirrel that claimed this tree must have used the same perch to work on the bone.

In the next photo you can see the grooves made by a squirrel’s incisors as it chiseled off bone shavings.

Smaller rodents, like voles and white-footed mice, leave finer grooves like the ones in the next photo.

These creatures weren’t after marrow, since the bones were relatively old and the marrow had been removed long ago. This behavior is probably driven in part by the need to supplement their mineral intake, but rodents also chew on bones (and antlers as well) to maintain their teeth in good condition. Their incisors grow constantly, and are subject to malocclusion if not shaped and worn down with regular gnawing. The same is true for rabbits and hares, which are also known to gnaw on bones.

As time passes carcasses are pulled apart and bones are cleaned of soft tissue, scattered, broken, crushed, pulverized, chewed, and ingested by many different animals. Rather than piling up as useless cast-offs, animal bones gradually disappear as they are utilized by living creatures. Animals are part of the web of life both while they are alive and after they are dead.

Cottontail Rabbits

Familiar animals can be just as interesting as less common ones, and the cottontail rabbit ranks as one of our most familiar–and interesting–creatures. In the photo below (direction of travel from right to left) we see it’s characteristic Y-shaped bounding pattern: two rear tracks even with each other and widely spaced, and two front tracks behind the rear ones, more narrowly spaced with one leading the other. The right front print (the first foot to come down) lies at the right side of the photo and the left front print (the second foot to come down) lies to its left. Farther to the left you see the rear prints which form the diverging branches of the Y. I found these tracks on a highly developed barrier island on the New Jersey coast, probably not a place you would expect to find cottontails. But these animals manage to survive and flourish not just in rural and undeveloped areas but also in city parks, suburban communities, and busy commercial zones.

Although the pattern shown above is very common, it’s not the only four-print arrangement you’ll see. Sometimes a rabbit’s front feet come down together, and when this happens the prints are even with each other and pressed tightly together. Bounding squirrels make groups similar to those of rabbits, but the spacing of the front tracks is different. Whether the front prints are even with each other (the most common arrangement) or whether one leads the other, there is almost always a gap between the two prints. In the photo below the rabbit tracks are in the lower left and the squirrel tracks are at the upper right.

The tracks in the photo below were made by a cottontail bounding in deep snow (direction of travel from bottom to top), and the toes are splayed out in both front and rear tracks. Tracks like these are sometimes mistaken for snowshoe hare tracks because of their larger size.

The feet of both cottontails and snowshoe hares can spread when increased support is needed, but there’s a drastic difference between the two animals. The maximum width of a cottontail’s hind print is about 2 1/2 inches, while a snowshoe hare’s rear track can reach a width of more than 5 inches. The photo below shows a rabbit’s rear foot (seen from the bottom) in a splayed position. Note that the rear foot has only four toes.

In the photo above you can see the thick fur which covers the bottom of the rear foot of the cottontail, and the front foot is just as furry. This is why the outlines of the toes in rabbit tracks are blurry, especially in snow. The next photo shows the right front print of a cottontail (facing to the right) in mud that had dried to a perfect consistency for recording fine details. The toes are visible but not sharply defined, and the texture of the fur can be seen in and around the toe impressions. This photo also shows all five toes clearly–yes, there are five toes on the front foot of the rabbit. But counting toes can be difficult because there are also some pads which look like toes.

To help sort this out I’ve marked the toes and two of the pads in the next photo. The innermost toe is marked Toe 1, following the convention of numbering from the inside of the foot. It’s smaller than the others and often fails to register in tracks. The other four toes are larger and tipped with substantial claws, and the toe arrangement as a whole is asymmetrical.

If you’ve ever had a run-in with a rabbit’s foot you know that, in spite of the furry covering, the sharp claws can dig in quite effectively. Sometimes the claws are the only parts of the foot that make impressions, as in this photo of the right and left rear tracks of a rabbit in a hurry (direction of travel toward the upper right).

In addition to tracks, rabbits leave many other signs of their presence. You may find stems bitten off at an angle like the multiflora rose in the photo below. These angled cuts are characteristic of rabbit browsing and they arise from the anatomy of the rabbit’s jaws.

In the next photo you see the lower jaw of a cottontail with an added line representing a stem or twig. As it takes the stem between its upper and lower incisors, the rabbit positions the stem so that one end passes through the gap between its incisors and its molars. This biting technique results in an angled cut. Deer don’t have upper incisors so instead of making a clean bite, a deer grasps the stem between its lower incisors and its horny upper palate and pulls or jerks to make a rough break.

Cottontails also feed on the bark of young trees and shrubs. Their chews have a rough appearance, with bites penetrating to varying depths, as in the staghorn sumac stem shown below. Chews made by other bark feeders (beavers, porcupines, voles, and occasionally squirrels) are much neater and more consistent in depth of penetration.

Whether it’s bark, twigs, or buds, a rabbit has to ingest a lot of fiber to get at the nutritious living cells in the cambium or in the tiny leaf initials inside buds. The animals boost the nutrition they get from their food by processing it twice. After passing through most of the digestive system, waste is diverted to the caecum where it is fermented to produce additional nutrients. This material is eliminated, usually at night, as clusters of soft globs called caecotropes. We seldom see this kind of fecal matter because the rabbit eats it immediately. After passing through the digestive system again, the waste is eliminated as pellets like the ones in the next photo.

These pellets are dry and fibrous, and are normally scattered irregularly where rabbits feed and move about. Unlike the rounded cylindrical pellets of deer, rabbit pellets are shaped like slightly flattened spheres. Cottontails are now shifting to their summer diet of grasses, forbs, and flowers, but the final result will be pellets similar to those produced from woody food.

The cottontail rabbit is a thoroughly interesting creature with some impressive tools for survival. By observing its tracks and trails as well as chews, scat, and other sign, we can appreciate a creature that is beautifully adapted to its environment.

When the Snow Gets Deep

One of the challenges in a winter like the one we’ve been having is tracking in deep snow. Our native animals are mostly well equipped to cope with such conditions, but the evidence they leave can be mystifying–animals may change their habits, tracks and trails may look very different, and the details we generally rely on for identification may be absent. But the lives of animals are still written in the snow. To read these stories we just need to acquire some new reference images and expand our tracking skills.

A red fox made the trail shown below. In the deep snow the direct register walk was the most energy efficient gait, each hind foot coming down in the hole made by the front foot on the same side. Compared to walks in easier conditions the fox’s steps were shorter and its trail width was greater. The animal lifted its feet cleanly out of the snow, leaving just a few drag marks.

The direction of travel, from bottom to top, is revealed by the sprays of snow which fell off the feet as they rose out of the holes and moved forward. Whether animals are walking or moving at faster gaits–as long as their movements are regular and smooth–snow falling from their feet usually lands ahead of the tracks. Only during sudden acceleration or changes of direction do we see snow pushed backward or to the side.

A coyote walking from left to right made the trail in the next photo. The snow was less consolidated so there’s a softer appearance to the trail. The details in the track floors are obscured by the snow that fell in as the feet were lifted out, and the animal’s feet skimmed the soft surface leaving drag marks. Looking down into the holes (which is always a good idea in this kind of situation) we can see the shapes of the forward edges of the animal’s feet. The overall shape of a coyote’s foot is oval or egg-shaped, but how should we describe just the front half? The best I could come up with is parabolic or bluntly arched. Whether or not there’s a word for it, this shape is characteristic of coyotes and red foxes, and also some dogs. And there’s another feature that is typically canine: in the very tip of the hole on the right you can see two small dents made by the leading claws–a dead giveaway for a red fox or coyote. Gray foxes usually have more rounded leading edges and less tendency to show claw marks. Being shorter legged than red foxes, gray foxes are more likely to leave drag marks, and dogs are also prone to dragging their feet.

These two trails illustrate the general appearance of canine trails in deep snow. Because walks in deep snow tend to be very close to direct register it may be possible to get rough measurements for track widths, and this, plus stride or step length, can help to separate coyotes from red and gray foxes.

Bobcat trails in deep snow may be quite different from canine trails. In the photo below a bobcat walked from bottom to top, and at each step it spread its feet as they went down into the snow, creating a sequence of interlocking triangles. As usual, snow obscured the details of toes and pads at the bottoms of the holes, but in the lowermost impression you can see that the forward edge of the track is widely crescent-shaped rather than parabolic.

Sometimes animals negotiating deep snow move faster, perhaps out of fear or maybe just playful antics. In the photo below a red fox bounded from upper left to lower right, leaving holes where its body went in up to its shoulders. There may not be much information inside the holes, especially if the snow is loose and movable as it was when the photo was taken, but their width provides a rough measure of the width of the animal’s body. The level of effort required for this kind of movement means that it can’t be sustained for long periods, so following the trail either backwards of forward will probably bring you to a change of gait.

In spite of their long legs, deer are not well suited for moving in deep snow. Their feet are small in proportion to their body weight, so they sink in deeply. Deep drag marks like those in the photo below are typical, and sometimes the tips of the toes can be seen at the bottoms of the holes.

In deep snow deer may limit their movements to trails they’ve already made, such as the one in the next photo, where they can move with less effort. If the difficult conditions persist the animals may limit their movements to very restricted areas which become crisscrossed with trails. These deer yards are usually found under conifers, where the snow isn’t as deep and the evergreen foliage traps heat. When deer yard up the available browse is quickly eaten, so they eat very little, reduce their activity, and wait out the winter.

For short-legged animals like porcupines, skunks, and muskrats the only option in deep snow is to bulldoze their way through. In the photo below a skunk struggled from upper left to lower right, its body plowing through the snow and its feet punching deep holes in the bottom of the groove. The small pits made by the feet, combined with the short strides and wide trail width are good indicators of the animal’s identity.

When temperatures fluctuate or sun melts the surface, snow can develop an icy crust. Sometimes this reduces the problem of movement, allowing lighter animals to move easily over the surface. But if the hardness of the crust varies or the animal is just a little too heavy, we may find scenes like the one in the photo below. A coyote attempting to cross a drift found that it wasn’t always supported by the crust. Where it broke through it left crisp outlines of its lower legs and spread toes.

Like other animals, rabbits and squirrels can plunge deeply into snow, and this can make it hard to identify their tracks. But the difference in the positioning of the front feet usually provides a clue to the animal’s identity. The next photo shows a cavity made by a gray squirrel bounding from lower left to upper right. Inside the hole there are two depressions, each one made by a front foot and a rear foot from the same side. The wide separation of the depressions and the equally wide entry and exit disturbances give the hole a boxy or rectangular shape.

Compare that to the next photo of a rabbit in deep snow, also bounding from lower left to upper right. Because the rabbit brought its front feet down on or close to the center line of the trail, the entry point (at the lower left) is narrow. The rear feet made a wide depression in the deepest part of the hole and left separated drag marks coming out. The result is a triangular cavity with the wide end opening toward the direction of travel.

Maybe the biggest hinderance to learning how animals move in deep snow is just getting out into the stuff. You’ll need snowshoes or skis, or at the very least good gaiters, to get close to the tracks. But if you spend some extra time arranging all your gear you’ll be rewarded with a deep look into the lives of animals in deep snow.

Looking On The Bright Side

The leaves are down, and the colorful spectacle of autumn is behind us. The forest has gone from a kaleidoscope of color to a narrow spectrum of browns and grays. But wait, what’s that pale streak glinting among the tree trunks? If you look closely you can see it in the center of the featured photo. Moving closer we can see that it’s a buck rub, bright wood laid bare by a hormone-driven male deer. This is rutting season for whitetail deer, and the bucks are roaming the landscape seeking receptive does. They leave their calling cards on living trees–anything from very young saplings to substantial trunks 8 inches or more in diameter. To make a rub the animal lowers its head and rakes its antlers up and down against the stem. Rough areas around the bases of the antlers work like files to abrade the outer bark down to the light colored sapwood.

The photo below is a close-up of the rub in the first photo. Rubs are usually between one and four feet above the ground, and their edges are often rough or stringy. Gouges made by the short tines near the antler bases are often present–look for them just above the debarked area. The brightness of the freshly exposed wood is what attracts our attention, and it may do the same for deer. But buck rubs also carry scent messages, deposited when the animal rubs its forehead against the newly bared surface. We’re not equipped to detect these chemical signals, but to a visiting doe they convey a wealth of information about the age, health, and even individual identity of the rub maker.

The light colored areas in the photo below have also been denuded of bark, but this wood was exposed by feeding rather than by rubbing. A porcupine climbed these yellow birch trees and chewed through the outer bark to get at the cambium, the living cells that produce both bark and wood during the growing season. There’s no mistaking this example for a buck rub, but porcupine chews are sometimes found close enough to the ground to be confusing. In both cases the light wood stands out against the bark, but there are several clues that distinguish rubs from chews.

Instead of a smooth surface, wood that has been exposed by porcupine feeding is textured by tooth grooves, and the margins are more irregular, as in the photo below. The tooth marks are just deep enough to reach the nutritious tissue, and are organized with a neatness that speaks of feeding efficiency. Along the margins of chews there are often tooth marks instead of the stringy fibers that mark the edges of rubs.

Beavers, like porcupines, rely on the cambium of woody plants for much of their winter diet. Being larger than porcupines, beavers’ wider incisors give their chews a more robust appearance. And rather than climb to access food, beavers bring the food down to their level by felling trees. The beaver that felled the log in the photo below stood on its back feet to feed, anchoring its upper incisors in the bark and drawing its lower incisors upward to scrape up the cambium. It moved systematically along the log, leaving the row of shallow upper incisor digs in the bark and the longer lower incisor marks below them. Like the porcupine, the beaver penetrated just deep enough to scrape up the nutritious cambium.

Not all bark chewers show this kind of efficiency. The sumac stem below was chewed by a rabbit, and its ragged appearance contrasts with the more orderly work done by beavers and porcupines. Rabbits only feed on small stems, and their chews show varying depths of penetration with projecting splinters of bark and wood. Like beavers they are limited to what they can reach from the surface they’re standing on, but if there’s a deep snow pack or heavy snow that bends branches down, rabbit chews can be found in some surprising places.

Here’s another kind of feeding that might catch your eye in the autumn woods. Woodpeckers worked on this standing dead tree to get at the insects in the outer layers of wood. The beak strikes left pits, partially lifted slivers, and gouges (best seen on the right edge of the tree). This kind of woodpecker work can be located at any height, and may even be found on downed logs, but unlike the previous examples, it only occurs on dead trees.

Here’s a final example of eye-catching brightness. As the weather gets colder, squirrels leave their leafy tree-top dreys and make nests in hollow trees or other protected places. They gather fibrous bark for nest lining, and in the process, leave freshly debarked wood for us to find. The dead, fallen branch in the photo below was stripped of its fibrous inner bark by a squirrel. Although there’s a vague resemblance to a buck rub, the position of the branch and its non-living status indicate squirrel work rather than deer.

When squirrels harvest fiber from woody plants they may leave another clue. In the photo below you can see the paired marks of a squirrel’s incisors. Much of the bark removal is done by pulling up long strips, but occasionally the squirrel leaves a bite mark as it grasps the bark with its teeth.

Squirrel stripping is also found on living stems–I’ve seen it on honeysuckle and red cedar–and these are more likely to be mistaken for buck rubs. But areas shredded by squirrels are often in places a deer wouldn’t be able to reach, higher on a trunk, within multi-stemmed shrubs, or on stems guarded by projecting branches. Deer prefer sites with straight stems and unobstructed approaches, and any small branches or twigs are usually broken off by the vigorous action of making a rub.

I love this time of year–the leaves are down, and I can see for greater distances through the trees. Many signs of animal activity are hidden by fallen leaves, but others have become more visible. And every once in a while a bright patch shining among the duller tones draws me in and opens up a new and interesting discovery.

Spring Fever among Woodchucks

If you think you have it bad, just consider the woodchuck. The males emerged from hibernation weeks ago only to find the ground covered with snow. There wasn’t much to eat, and the weather wasn’t very spring-like. But no matter–they were more interested in procreation than food or comfort, and they spent their time searching out burrows occupied by females. Upon finding a receptive female the male entered the den and copulated with her, then moved on in search of another one. With nothing much to eat the roaming males, which may have dropped up to 1/3 of their body weight during hibernation, lost even more body mass. Meanwhile, the female woodchucks remained underground and got a few more weeks of sleep.

This delayed emergence is important because, like the males, female woodchucks have already lost weight during hibernation and losing even more would impair their ability to give birth to healthy young. Their appearance above ground coincides with the onset of new spring growth and their condition improves rapidly.

I found the den pictured below in early March. A few inches of new snow covered about a foot of denser old snow, which made for nice tracking. There weren’t any tracks beyond those shown in the photo, so it looked like the animal came out, took a look around, and then went back into the burrow. The mud-on-snow tracks are remarkably clear–check out the right front print just to the right of center.

Finding such unmarred tracks around burrows becomes less likely as the season advances and the animals make more forays to and from their winter refuges. The photo below, also from early March but taken a few years ago, shows the muddy and partially melted evidence of several trips. In both of these cases the weather was still pretty cold and there was a substantial snowpack, so these were most likely males in the throes of spring (or rather mating) fever.

As winter loosens its grip woodchuck tracks start becoming more widespread in fields and forest edges. In the photo below the direction of travel is from the lower left of the frame to the upper right, and the impressions form a zig-zag pattern. Each angle of the zig-zag is composed of two


tracks, the rear positioned roughly on top of or close to the front track from the same side. These are the characteristics of the indirect register walk, the woodchuck’s most common gait. Starting from the lower left, the sequence in the photo above is right hind on right front, left hind on left front, right front with right hind just ahead, left hind on left front. To the right of the first set of left front and hind there are some gray squirrel tracks heading in the opposite direction.

By the way, woodchucks are also known as groundhogs, but I prefer the name woodchuck, because the word derives from one of its Native American names. Woodchucks weren’t as common in pre-colonial times as they are now, but their populations would have been concentrated around cultivated fields so they would have been familiar to Native Americans. They still thrive in agricultural landscapes, and are sometimes seen as pests. From an ecological point of view they are actually beneficial. Woodchuck excavations help to turn over and aerate soils, and their burrows provide homes for many other animals.

The photo above shows a burrow I found after a very cold night. Rabbit tracks led both in and out, but this hole wasn’t dug by a rabbit. Unlike European rabbits, which construct extensive tunnel systems called warrens, our cottontails don’t dig burrows. They get along just fine without underground housing, unless it’s very cold. When that happens they find shelter, and that shelter is often a woodchuck burrow.