Leafy Disturbances

Leaves: at this time of year the woody plants are bare of leaves, and last summer’s weather-beaten foliage covers the forest floor in all directions. Is there anything we can learn about the lives of animals from this seemingly mute carpet? The answer is a resounding yes! In the photo below we see a well-used deer trail. The dry, undisturbed leaves on either side contrast with the darker, disturbed texture in the trail. Even when it’s compressed, deciduous leaf litter is harder to walk on than pre-existing trails, so deer often create runs between bedding and feeding areas.

It’s not as easy to detect deer tracks if they’re not on well used trails. The next photo shows an individual deer track, orientated toward the right. The hoof pressed down into the leaf litter and the outer rims left curved depressions on the top layer of leaves. But if you just were hiking along, would this print attract your attention? Probably not. To find individual deer prints it helps to study areas where the animals have spread out from obvious trails into feeding or bedding areas.

Fall is mating season for whitetail deer, and back then the males were spending most of their time trying to attract females. Bucks made scrapes on the ground and left their scent at the site by depositing urine in the scrape. They also left their olfactory signature by rubbing their foreheads and faces on overhanging branches. The signs of these mating rituals often last into spring. In the photo below (taken a few weeks ago) you can see a scrape just below an overhanging branch still bearing a few leaves.

A close-up of the scrape has a weathered look but still shows signs of deliberate disturbance.

Deer aren’t the only animals that clear leaves. Turkeys sweep leaves aside as they search for insects and other edible tidbits beneath the leaf litter. In the photo below debris lies on top of the leaves at the bottom and lower right, showing that the turkey stood facing the upper left as it tossed the leaves backward. By using both of its feet the bird created a roughly triangular cleared patch.

But turkey feeding scrapes aren’t always triangular. In the next photo you see one that’s more irregularly shaped. There can be a lot of variation in the shape of the cleared area and the amount of displaced debris.

Buck scrapes and turkey scrapes can be quite similar, but there are ways to tell them apart. First, deer mate exclusively in the fall, so buck scrapes discovered in the spring will show signs of several months of weathering. Turkeys make feeding scrapes in all seasons, so at this time of year they range from fresh to weathered in appearance. Both of the turkey scrapes shown above are relatively recent, while the buck scrape in the preceding photos had been created about five months earlier.

Another difference between deer and turkey scrapes is their distribution. An individual buck usually makes a limited number of scrapes, almost always associated with overhanging branches, in an area he is patrolling. Turkeys usually feed in groups, and they go wherever the eating is good, so turkey scrapes are likely to be more numerous and scattered more irregularly.

Squirrels also disturb leaves. The next image shows a cleared area at the base of a tree. When I found this I wondered if it was the result of frequent use as a take-off spot by squirrels.

To check, I looked at the bark above the cleared spot (shown in the next photo) and saw that the moss and outer bark had indeed been abraded. I’m attributing this to squirrels, the most common tree climbers, but I can’t entirely eliminate the possibility that it was a raccoon. Other climbing animals are unlikely because they are less likely to climb one tree repeatedly.

Like turkeys, squirrels search for buried nuts and insects, especially in the spring when stored food supplies may have run out. Both red and gray squirrels obtain these items by digging small holes. In the next photo you see a dig made by a squirrel. Debris from the hole can be seen below and to the right, so the squirrel must have been facing the upper left as it dug.

Here’s another image of a squirrel dig, this time in a layer of pine needles. If the buried object was a nut or acorn the hole usually retains a firm impression of the object. In the digs shown in both photos the bottoms of the holes were loose and irregularly shaped, so the food items were probably insects.

Deer also dig at leaf litter in search of nuts and acorns. White oak acorns are consumed by many animals and birds, so they disappear soon after they drop. The higher levels of tannins in red oak acorns make them less palatable, so they mostly lie uneaten on the ground until soaking rains leach the tannins out. But once they’re more digestible red oak acorns are sought out by many animals, including deer. Where red oaks are the predominant oak species, areas of churned up leaves like those in the next photo (taken last December) can be found in late fall and winter. You can see fragments of acorn shells and meats the deer dropped as they chewed.

If there’s a heavy, wet snowpack in late winter that compresses the leaves, deer feeding areas may be hard to recognize by the time spring arrives. But after winters with little snow like the one we just had, the signs are evident. A few weeks ago I went back to the area where the photo above was taken to see what it looked like. In the photograph below you can see that the leaves still lie loosely in piles and windrows. There aren’t any acorn fragments to be seen–if the deer weren’t interested enough to gather them up they would have been eaten by other animals like squirrels, mice, raccoons, crows, foxes, or even fishers. You’re not likely to find fresh evidence of deer foraging for acorns because the fall crop has been mostly consumed.

Areas where the leaves were not churned up by deer (or turkeys) look very different. Fall rains and the little snow we did have were enough to flatten autumn’s leaf fall into a smooth-looking mat like the one pictured below.

Some places cleared of leaves are more mysterious . Is this the work of a deer? Or a turkey? Actually, neither.

When you see the same spot in the more distant shot shown below, you’ll see what moved the leaves: water. The close-up above comes from the area in the lower left quadrant of the distance shot below. During a heavy rain, water flowed down the trail on the right and spilled over the edge into the leaves. As the water rushed downhill it made channels in the leaves and moved them into heaps along the edges.

Leaves have stories to tell, and to understand them we need to get familiar with undisturbed leaf litter. Once we begin to pay attention to leaves, and to places that depart from the unaltered baseline, we’ll have a whole new window into the lives of animals.

Squirrel Nests

As the leaves come down it’s easier to see into the forest canopy, and the summer nests of squirrels become more visible. The photo below shows a gray squirrel nest, a leafy structure located on a supporting branch junction. Also known as dreys, gray squirrel nests are usually located in crotches or branch junctions of deciduous trees. To build a nest in a tree, a squirrel constructs a framework of twigs and stuffs it with leaves, then makes an entrance hole and hollows out the inside of the structure. A lining of soft material such as moss or dry grass is added, and a second opening is made to serve as an emergency exit. Dreys differ from bird nests in being roughly spherical, with an enclosed interior space connected to the outside through small openings. Bird nests also lack the leafy appearance of gray squirrel nests.

Red squirrel nests are similar but are likely to incorporate a variety of materials in the outer layers. They are also more likely to be built in conifers. The next photo shows a red squirrel nest located in a larch tree. Twigs and grasses form the lower part of the nest, and fragments of plastic sheeting cover the upper part.

The nest shown above was easy to see in winter when the larch was leafless, but nests located in evergreen conifers are harder to find. The one in the photo below was tucked up against the trunk of a Norway spruce tree.

Here’s another red squirrel nest which was constructed in the crotch of a Scots pine.

There’s not nearly as much information available on flying squirrel nests, no doubt because flying squirrels are nocturnal and not as easily observed as gray and red squirrels. Mark Elbroch, in Mammal Tracks and Sign, Second Edition, reports that flying squirrel dreys are smaller than red or gray squirrel nests and are made of grasses and other fine materials rather than leaves.

In more southern climes dreys may suffice for winter lodging, but in our area squirrels move into more sheltered accommodations when the weather gets cold. Human structures are used where they are available, but hollow trees are the preferred choice for forest-dwelling squirrels. Nests enclosed in protective walls of wood and lined with insulating materials provide warmth, protection from the weather, and security. But is there any way for us to know which tree houses a nest? It’s not always possible, but there may be clues. The tree in the photo below must have had a good nesting space because it had been marked with a few bites. We recognize the bites visually, but the persistent odor of the resident squirrel’s saliva is more important to other squirrels, signaling that the space is occupied.

Red, gray, and flying squirrels all make winter nests in hollow trees. If the opening is quite small it’s probably not occupied by a gray squirrel, but beyond that, the size of the opening doesn’t tell us much about who the occupant is. I’ve found marked openings in trees where gray squirrels are absent and red squirrels are common, and also in areas where the reverse is true, so I believe that both species create bite marks to claim nest sites.

Bite marks can be sparse, like the ones above, or plentiful, like the artistic creation in the next image. I suspect that the double ring of bites was created because the owner felt threatened by the presence of other squirrels.

Nests in hollow trees continue to be useful well into spring as birthing dens. But although well protected from the elements, they have a drawback: there is usually just one entrance. In the next photo you see some nest lining that was removed from a nest and ended up in a pile on the ground. This would only have happened if a predator had raided the nest and, in the process, pulled the nest lining out. It could have been a fisher, or possibly a raccoon. Both are good climbers and fishers are considered to be specialists in squirrel predation. At any rate, nests in hollow trees are not completely safe.

In addition to clues about predation, the photo above shows us what nest lining looks like. To make this material, squirrels harvest bark and process it into finely divided strands that can be stuffed into tree cavities to provide insulation. The bark usually comes from dead branches, but may also be gathered from living stems of plants such as honeysuckle or white cedar.

The next image shows a dead striped maple branch that was stripped for nest lining. The exposed wood and fibrous remnants may bring to mind a buck rub, but buck rubs differ in several ways. Buck rubs are made on living stems that are more or less upright and have no obstructions that would hinder the approach of a large animal. Rubs are usually limited to one continuous section of the stem and occur at heights between 1 1/2 and 4 feet off the ground. Branches stripped by squirrels have random angles from vertical and could be anywhere from ground level (including fallen branches lying on the ground) to much higher. Bark is usually removed from multiple areas, and there may be a tangle of branches that would make it hard for a deer to reach the debarked sections. And finally, the wood surface of a buck rub shows signs of abrasion, while the wood exposed by squirrel stripping is mostly smooth.

Stripped branches do sometimes have telltale squirrel tooth marks like the ones in the photo below.

If you keep track of weather you’ll notice that cold nights are often followed by new bark stripping. I sometimes imagine a shivering squirrel thinking, “Wow, it was cold last night, I’m going to get more insulation for my nest!” Well, maybe it doesn’t happen exactly like that–sorry about the anthropomorphizing. But it’s clear that squirrels respond to cold with increased harvesting of fibrous bark. And it’s okay to imagine a squirrel sleeping in a cozy, insulated nest in a hollow tree on a cold winter night.

Squirrel Marking

Some animal communication is just for the moment, gone as soon as it is created, and some is more permanent. Whether it’s a patch of earth pawed by a deer, a scat deposit carefully positioned by a fox, or a twist of grass left by an otter, messages left in physical media can convey information long after the author has left the area. Squirrels are especially adept at this type of messaging, and their medium of choice is something they are intimately acquainted with–wood. Tree trunks, branches, roots–all can serve as bulletin boards for intra-species communication. One of the best times to observe squirrel marks is early spring, after the snow is gone but before new leaves limit our view through the forest.

The photo below shows an opening into the trunk of a large red maple. Hollow trees provide critical winter shelter, and this one must have been prime real estate because the hole has been bitten around the edges by a squirrel. Gray, red, and flying squirrels (of both sexes) use their incisors to declare ownership of desirable nesting spaces. Theoretically the sizes of the gouges should tell us which species did the marking, but the hole was about thirty feet up, and it’s hard to measure tiny things like tooth marks when you’re that far away.

The creature claiming possession of the tree in the next photo is easier to determine. Gray squirrels, primarily males, make vertical marks called stripes to assert territorial claims. They seem to prefer rough-barked trees like the white oak pictured in the photo, and the stripes are generally found on large trunks between 2 and 6 feet above the ground. I’ve also seen gray squirrel stripes on red oaks, chestnut oaks, hickories, and tulip trees. After marking, a squirrel may rub its cheek on the bitten area to leave its scent. You can see from the varying degrees of weathering that this tree has been marked repeatedly over several years.

Red squirrels also have distinctive ways of creating messages, and one of the easiest to find is the branch marking associated with conifer middens. Middens are accumulations of discarded cone scales and cores found below habitual feeding perches. The photo below shows a midden at the base of a Norway spruce. Most conifers, with the exception of some pines, tend to retain lower branches for years after they have died, and these provide perfect feeding perches. The oversized cones (up to 8 inches long) produced by Norway spruces are prized by red squirrels, and the middens came become quite large.

If you examine the branches above a midden you’ll probably find bite marks like the ones shown in the next photo. The image shows a Norway spruce branch which extends horizontally about four feet up the trunk. The upper surface of the branch is adorned by numerous bite marks. You can see the midden (out of focus) on the ground below the branch.

Red squirrels also make marks at or near ground level. In the photo below you see a Norway spruce root which has crossed over and been lifted over the years by the swelling root crown of a neighboring tree. This tree was part of a plantation that dated from the 1960s, and the trees were close enough together that horizontally spreading roots often passed close to the bases of neighboring trees. This also happens in other conifers when they grow in crowded stands, and the small lateral roots have thinner bark than the trunk and the larger roots.

A closer look, shown in the next photo, shows that a red squirrel has bitten through the bark of the lateral root. The light colored gouges are recent marks and the whitish ones are older, probably made the previous year and covered with dried resin.

Norway spruce plantations were established throughout the east during the Depression and also later in the 20th century. With their large crops of oversized cones, stands of Norway spruce are preferred habitats for red squirrels and are great places to investigate red squirrel marking. Other conifers were also used for reforestation projects, and if they support resident red squirrels you’ll probably find evidence in the form of marking and middens. Both branch marking and root marking are the animals’ way of defending their underground larders of winter food.

Squirrels also use their incisors for purposes other than marking, such as debarking trees to get at the living cells of the cambium. The photo below shows a staghorn sumac that was fed on by a gray squirrel. I found this a few years ago in early March, and the color of the exposed wood indicated that it had been done not long before. Late winter and early spring can be a time of scarcity; stored food supplies may be exhausted and squirrels may be forced to turn to foods which are less nutritious or harder to access. I’ve occasionally found similar cambium feeding by squirrels on sugar maples.

Squirrels, both red and gray, also tap trees when the sap flows in spring. The animals choose vigorous trees, and bites are made in living, thin-barked branches by anchoring the upper incisors and drawing up the lower ones. This creates what Sue Morse calls a d0t-dash pattern. Two fresh bites on a sugar maple branch are shown below, and above them there’s an older bite. Interestingly, the sap is not consumed immediately, but is allowed to dry. Once the water has evaporated the squirrel returns to lick up the crystallized sugar.

When we find a mark made by a squirrel, we can infer something about the availability of food or the presence of a desirable nesting site, but for other squirrels there’s much more involved. The associated cheek rub or saliva deposit is unique to the individual and carries information about its sex, health status, and possibly other characteristics. Even though receiving these messages is beyond our abilities, I enjoy finding squirrel marks and imagining the messages they convey to their neighbors.

Gray Fox Affairs

It’s been a strange winter. In my neck of the woods we had some significant snow early in the season, but no big storms since then. Temperatures have been up and down (more up than down), and with all the melting, the snow we do have has consolidated into a dense, icy layer. Much of the time the conditions have been terrible for tracking, but every once in a while something wonderful has happened: warmth and liquid precipitation have been followed by dropping temperatures and a change from rain to snow. When this happens, snow that falls while the air is still relatively warm becomes bonded to the crust. As the temperature drops and additional snow falls, it forms a soft layer on top. The result is a non-slip and easily navigable surface that is a perfect medium for recording tracks.

A few days ago I encountered just such conditions: an icy base covered by a thin layer of soft snow. I was in an extensive natural area, and both the forest road I was following and the surrounding landscape offered beautiful tracking conditions. Animals of all sorts had been moving easily over the snow, and there were tracks everywhere. I found myself following the trail of a gray fox. The animal went for quite a distance at an easy trot, but then it did something that was quite puzzling.

The photo below shows the fox trail as it goes from upper left to lower right. (You can also see a coyote trail to the right of the fox trail, and a mountain bike trail to the right of that.) As it entered the frame the fox was walking (the first three tracks at the upper left). In the next section (between the last walking step and the edge of the tree shadow) the pattern was very different, and following that the trail looks unlike either of the previous sections. I wanted to know what was going on and why the middle section looked so different.

In a situation like this the first thing to do is identify each track. The zig-zag of the walking section helps us to tell right and left, and the fact that the front foot is larger than the hind foot distinguishes front from rear. The next photo shows a gray fox front print on the left and a gray fox rear print on the right. You can see the difference in overall size and also the difference in the sizes of the middle pads.

The photo below shows just the puzzling middle section, and if you compare photos you’ll see that the front and rear in the photo above are actually the first two tracks in the middle section. It’s pretty clear that the first four prints in the photo below are left front, left rear, right front, right rear. After that it gets harder. The track just above the right rear is smaller than the one to its right, so those two prints must be left hind, left front. Three tracks from the right side come next, and it looks to me like the sequence is right rear, right front, right rear. The final two before the tree shadow are the left front and the left rear, and at the edge of the tree shadow there’s a right front with a right rear partially superimposed on it.

In the next photo I’ve added labels showing my take on right/left and front/rear. If we start at the beginning of the whole sequence, the animal was trotting (those tracks aren’t seen in the photos) and then slowed down to a walk (the first three tracks in the distance shot). The next section shows that the fox slowed even more to an overstep walk (the first four prints in the photo below), then slowed even more to an understep walk. There’s an extra right hind that’s puzzling, but I’m guessing the fox just repositioned its right hind foot. Then the overstep walk reappears after which the fox picked up the trot (the two impressions at the lower right in the first photo). Notice that the step lengths in the overstep part are shorter than the regular walk steps that preceeded them, and the step lengths in the understep part are shorter yet.

That analysis was rather involved, but it leads to a picture of what the fox actually did. As it trotted along something it detected made it slow down, first to a walk and then almost but not quite to a standstill. It was probably sniffing and listening intently as it moved very slowly. Once the animal concluded that it was okay to move on, it resumed its journey at a trot. It’s impossible, without more evidence, to know what caused the fox to react the way it did. It may have been a threat, but it could also have been something that interested it for a different reason. It is, after all, mating season for wild canines.

And the fox I was following was definitely tuned in to mating season. Farther on I found a spot (shown in the next photo) where the animal had detoured to urinate on a small spruce branch. If you look in the center of the frame you’ll see a squiggle of urine that runs horizontally from the upper edge of the spruce branch. Because the urine wasn’t squirted out the side of the tracks we know this was a female. She would have lifter one hind leg forward and supported herself on the other hind leg (plus two front legs) as she urinated. The relative depths of the tracks tell us that the supporting rear foot was the left. Its track is in the prominent double impression above and to the left of the urine.

I’ll never know what made the gray fox slow down and leave the pattern discussed in the beginning of this article. It could have been a threat–there was certainly a coyote in the neighborhood, or it could have been the mountain biker. A fisher (whose tracks I also found on that day) would have made the gray fox nervous. And there were red fox trails as well. But the trail shown in the photos above doesn’t suggest alarm so much as cautious interest. The fox didn’t change direction but just continued on. Was it another gray fox, one she was familiar with, or one she had mated with in a previous year? We have a small part of the whole story, and we can only speculate about the rest, but it’s fascinating just as it is.

Streamside Discoveries

As the high water levels of late winter and early spring subside, stream and lake margins become interesting tracking locations. Water is a magnet for wildlife, and visiting creatures leave the evidence of their activities along the shoreline. A great blue heron left the collection of tracks shown in the photo below. The feet of herons resemble the feet of songbirds, with one backward-pointing toe and three forward-pointing toes. But unlike most songbirds, the toes of herons don’t all meet at one point. There’s a left print (facing toward the lower right) in the upper left corner of the photo that shows this nicely. The junction between the backward-pointing toe and the inner forward-pointing toe lies to the left of the intersection between the two outer toes. Another way of saying this is that the two outer forward-pointing toes join a little to the outside of the center of the foot. The same asymmetry shows in the right track in the lower right corner.

The spotted sandpiper is another bird that patrols stream and lake margins. These small birds–about the size of a starling–search for invertebrates on the edges of streams, ponds, marshes, and other bodies of fresh water. Their tracks (shown in the next photo) reflect their erratic and meandering movements. The three forward-pointing toes are relatively symmetrical and diverge at wide angles. On the back of the foot there’s short spur oriented to the inside that may or may not make an impression in tracks. The left print just below the stick in the upper right corner shows the spur nicely.

Raccoons prefer comfortable surfaces so it’s no accident that the animal that left the tracks shown in the photo below stepped along a soft deposit of sand left by a recent flood. The raccoon moved from the upper right to the lower left, leaving tracks in the sequence right rear, left front, left rear, right front. The difference between the wider but tighter rear track and the narrower, more spreading front track is easily seen in the set of prints at the upper right. Raccoons habitually work the edges of streams and ponds where they find tasty shellfish, frogs, crayfish and other invertebrates. The pattern of alternating sets of hind and front tracks from opposite sides tells us the animal was moving at a pace-walk.

Mink are also in the habit of travelling along the margins of water bodies. The animal that made the tracks in the next photo was moving from right to left at a lope, and the track sequence is right front, right rear, left front, left rear. Like raccoons, mink have five toes on both front and rear feet, but it’s not uncommon for the impression of the inner toe to be missing. In fact the only print in the photo that shows a clear inner toe is the left front. This track also shows the middle pad protuberances (just behind the toes) and the heel pad (the small indentation behind the middle pad). Mink share a taste for crayfish, frogs and invertebrates with raccoons, and occasionally catch small fish. They’re adaptable predators and may also hunt for small mammals on the surrounding land.

The mink’s larger relative, the river otter, also leaves its tracks along the edges of ponds and streams, but for this creature it’s mainly a matter of convenient travel between feeding areas. I found the tracks in the photo below on the inside of a bend in a stream where an otter had taken a short cut across a large sandbar. The sequence of tracks is the same as that of the mink tracks in the previous image, and the family resemblance–both mink and otters are mustelids–can be seen in spite of the different substrates. Otters are more aquatic than mink and capture most of their food in the water.

When they’re not foraging in the water otters spend their time on conveniently accessed sites near the water. They roll on soft surfaces like grass and forest duff to clean and dry their fur, and they socialize with other members of their family group. They also leave notices in the form of scat to non-resident otters that the territory is occupied. The otter scat in the photo below contains crayfish shell fragments, but it’s also common to find scats containing fish scales and bones, or the slimy remains of frogs. Otters often use latrines where scat of various ages and contents can be found.

The beaver is another very aquatic mammal. In the photo below you see two beaver tracks, a right front (above) and a right rear (below), both facing toward the right. In the front track the four toes show clearly and the two heel pads appear as elongated grooves because the foot slipped in the mud. In the bottom part of the frame the three outer toes of the hind print show clearly but the two inner toes are obscured by the front print. As is often the case, the webbing of the hind foot doesn’t show. The size difference between the front and rear tracks is striking and helps us to understand why beavers are such strong swimmers. Beavers feed on the leaves, bark, and stems of woody plants year-round, but during the growing season the diet also includes aquatic plants, cattails, sedges, and forbs. Their tracks usually lead between the water and foraging sites on land, and signs of branches being dragged into the water are common.

Smaller–but just as well adapted to life in water–is the muskrat. Like the beaver, the muskrat has rear feet that are much larger than the front. In the photo below, the track farthest to the left is the right rear, and just to its right you see the right front. On the right side of the frame the left rear lies below the left front. Notice that the small inside toes of the front feet made impressions in both of the front prints. The muskrat’s front feet, like those of the beaver, are adapted for handling food items and building materials rather than for swimming.

If you wander along shorelines you may find muskrat latrines. These sites are usually located on logs or rocks that lie in the water but protrude above water level. In the next photo you can see a rock decorated with scat of varying ages, deposited as an announcement that the territory is occupied. Although muskrats occasionally consume animal foods they are primarily plant eaters, and their scats usually contain fibrous material.

This is just a sampling of some of the wonders to be found along the margins of lakes, streams, and marshes. There’s always something to be discovered, so next time you’re out and about, take a detour to check a stream edge or a muddy shoreline. Better yet–if you don’t mind some wading–try a stream walk. It could be just the thing on a summer day.

Canine Romance

It may seem like the wild creatures are all hunkered down, just doing their best to stay alive and wait out the cold season. But for wild canines there’s more going on than simple survival. This is mating season for foxes and coyotes, and they’re engaging in behaviors that will eventually lead to reproduction. For human trackers the first clue to their new fixation is the increasing frequency of scent marking. In the photo below you see a splash of urine on the snow to the right of the corn stalk, left as a message to others of its kind by a gray fox.

Urine contains complicated combinations of chemicals that, to a discerning canid, reveal the identity and health status of the animal that produced it. As mating season progresses, changes in the chemical signature also indicate the animal’s readiness for mating and reproduction. Most of these messages are too subtle to be detected by people, but fox urine is an exception. The urine of both red and gray foxes takes on an increasingly musky, skunk-like odor as hormonal changes progress, and in late winter this odor is strong enough for a person to detect it a good distance away from the deposit.

The fox whose scent mark is seen in the image above was walking from the upper left to the lower right. We know that the it was a male because of the placement of the urine off to the side of the animal’s trail. The direction of travel is revealed by the appearance of the snow around the edges of the tracks. When a foot goes down into snow it pushes any movable material down into the hole. When the foot comes up and out again it often brings a little snow up with it, and this snow is dropped around the leading edge of the track as the foot moves forward above the surface. This means that the snow around the entry end of a track is relatively undisturbed while the surface at the exit end is decorated with sprays or scatterings of snow. In the photo of the gray fox trail there are four deep tracks, each one the landing place of a front and a rear from the same side, plus a light track near the third deep track. Starting at the upper left (and considering just the deep tracks), the sequence is left front + rear, right front + rear, left front + rear, right front + rear. The animal was standing on its right hind foot when it lifted its left hind leg to squirt urine at the corn stalk. The shallow print was probably made as the fox placed its right front foot lightly on the snow for balance while it was urinating. The corn stalk was a convenient object, but rocks, clumps of weeds, branches, or anything else that protruded above the snow would have done as well.

Among coyotes and foxes, early winter is the time for the establishment or reestablishment of pair bonds. Those that spent time apart after they raised a litter in the previous season usually rejoin, and unattached animals roam widely in search of potential mates. Bonded pairs establish their territory by scent marking around the edges, especially along borders shared with others of their species. Unless we are familiar with the area and the animals involved it’s hard to know whether scent marks are advertisements of availability or warnings that the territory is occupied.

During the lead-up to mating, pairs often travel together. The trails in the photo below were made by two red foxes travelling along a forest road. For at least half a mile the two trails wove back and forth, occasionally changing speed and sometimes diverging, but always coming back together. The male, with slightly larger tracks, enters the frame at a gallop, moving from the lower left to the upper right. The female is doing a side trot and her trail comes in at the lower right and leaves at the top of the frame just to the left of the male’s trail.

All of the behaviors I’ve described above help to strengthen the pair bond and propel the hormonal changes that lead up to mating. When the female’s endometrial lining begins to develop, her urine contains blood, and she leaves scent marks like the one in the photo below. She’ll soon go into heat and only then will she be receptive to the male’s advances.

The pair are both involved in the process of den selection and preparation, and pups are born about 50 (foxes) or 60 days (coyotes) after successful coupling. By initiating the early stages in the dead of winter nature insures that the pups are born in the spring when food will become increasingly abundant. Note: It’s important for trackers to avoid disturbing animals during this vulnerable time. We should not approach too closely or otherwise disturb a den site starting with the period of den preparation and continuing until the pups are no longer dependent on the den for safety.

This is, by the way, why coyote-dog hybrids aren’t as numerous as some people believe. Over thousands of years of domestication, dogs have lost the finely tuned sequence of reproductive behaviors that occurs in wild canines. Mating in dogs is no longer synchronized with the seasons, and males don’t assist in the raising of pups. Since these behaviors are genetically controlled, the offspring of matings between dogs and coyotes have disrupted patterns of behavior. The precise timing of reproduction is lost, as well as the strong pair-bonding and the dual effort from both parents (and sometimes female offspring from the previous year). For this reason the offspring of matings involving dog-coyote hybrids are unlikely to survive.

This is a great time of year to let tracking open a window into some of the underlying processes of the natural world. The mating rituals of wild canines have been shaped for success by natural selection, and this is beautifully illustrated in the behaviors we see in the tracks and trails of foxes and coyote.

Buck Rubs

Autumn is mating season for white-tail deer. The bucks sport fully formed antlers and bulked up necks and shoulders, and they’re busy sparring, posturing, and otherwise asserting their suitability as mates. Antler rubs are an important part of the bucks’ demonstrations. To make a rub a buck approaches a sapling or small tree and works its antlers up and down against the trunk. The rough surfaces at the antler bases act like rasps to remove the bark, and the tips of the tines leave rough gouges. In the center of the rub the exposed wood is bright and relatively smooth, and dislodged bark fibers may hang from the roughened margins.

Buck rubs are only made on living trees, and vertical trunks that have an unobstructed approach are preferred. Buck rubs are generally located between 1 and 3 1/2 feet off the ground and can be found on both hardwoods and conifers up to 10 inches in diameter. The light color of the exposed wood is eye-catching, but the most important part of the message is invisible. The buck deposits chemicals from scent glands in its skin by rubbing its forehead against the surface of the rub. In the process of making a rub a buck stops periodically to sniff the surface. Later, visiting does sniff the rub and take in olfactory messages that reveal the health and status of the rub maker.

Contrary to common belief, buck rubs are not connected with the removal of the velvet, the highly vascularized tissue which nourished the antlers as they grew. By late summer the rack is fully formed, and the velvet is beginning to wither and slough off. This process is assisted when the animals thrash their antlers against shrubs and small trees. By the time the rut begins in earnest the velvet is long gone.

An individual tree may be hit more than once, and a popular one may take on a whimsical appearance. Damage like that shown in the photo above may be enough to kill a young tree.

Rubs from previous years are often found among fresh rubs. Old rubs like the one in the photo below are dulled by weathering and are usually rimmed by callus formed in the growing season following the assault as the tree attempted to heal the wound.

Other animals also remove bark from woody plants, but there are usually clues that help to identify the culprit. Squirrels strip bark from stems and branches to use for nest lining, and stripped stems can look similar to buck rubs. Dead trees or branches are often the source for squirrel nest lining, and in that case we know it can’t be a buck rub. But sometimes the bark fibers are harvested from a living tree or shrub, such as the honeysuckle in the photo below. The lack of abrasion on the debarked area and the undamaged hanging strips signal squirrel rather than deer. Squirrels can gather fibrous bark from stems at any height, and the debarked areas in the photo are closer to the ground than an antler rub would be. If nearby stems or branches obstruct the stripped stem it’s also unlikely to be the work of a deer. And finally, as in the photo, stems harvested by squirrels may not be vertical while buck rubs usually are.

Debarking can also be a result of chewing. In the photo below you see a stem fed on by a cottontail rabbit. The irregular removal of bark and outer wood differs from the vertical bands left by the up and down rubbing of an antler. Rabbit feeding is also usually closer to the ground than would be expected in an antler rub, but keep in mind that deep snow can result in elevated rabbit chews. Porcupines and beavers also chew on shrubs and trees at varied heights. But like the rabbit chew, the tooth marks left by these animals are different enough from the abraded surface left by antler action to separate their chews from buck rubs.

Antler rubs are part of a suite of behaviors that allow male white-tail deer to establish dominance and demonstrate their prowess, but that’s not all there is to it. These behaviors also trigger changes in the females that prime them for mating. Sniffing a rub sends chemical signals to a doe that precipitate a flood of hormones and prepare her for reproduction. Buck rubs are part of an intricate interplay of behaviors that results, if things go well, in the appearance of offspring about 6 1/2 months later.

Beavers at Work

Some animals live among us almost undetected, and others leave evidence that is obvious and long-lasting. Beavers are a good example of the latter, leaving signs of feeding on woody plants and creating dams and lodges that may last for years. The featured photo shows a lodge made of mud and sticks and surrounded by protective moat of water. What we can’t see is the underwater entrance which leads upward to a dry, multi-level living area. In the upper left quadrant of the photo there’s a dam, seen from the upstream side. The freshly peeled sticks that decorate the lodge and the dam, and the water lapping right up to the top of the dam, indicate that there were beavers in residence when the photo was taken.

Beaver dams can be impressive structures. The next photo is a view of a dam from the downstream side. The heaped up sticks conceal inner layers of mud interlaced with more sticks. Beavers react to the sound of flowing water, and any leaks are plugged with mud and more sticks. As long as the dam is maintained, the water level stays high enough to keep the lodge (not seen in this photo) secure in its watery surroundings.

A little exploration around the edges of an active beaver colony will turn up additional signs. When whole trees are removed the only thing left may be a chewed stump like the one below. Wood chips scattered nearby show where branches were removed and the trunk was sectioned and dragged off.

Some logs may remain where they fell, but they seldom go unused. One such log is shown in the next photo, and it’s a nice demonstration of the beaver’s chewing technique. The horizontal row of small cuts along the edge of the bark shows where the upper incisors were anchored. The vertical grooves in the lower peeled part of the log were made as the lower incisors were drawn up toward the anchored upper incisors. And why all this chewing? To get at the living cambium cells, located between the wood and the outer bark. Although there are exceptional cases where other food is available (such as the rhizomes of water lilies), most beavers depend on the cambium of woody plants for survival when leafy vegetation isn’t available.

Many dams and lodges are used for several years in succession, and newly added sticks and branches stand out against the mud and older sticks. The residents of a beaver colony also create deliberate messages indicating their claim to the location. In the photo below you see mud that was dredged up from the bottom and deposited on top of a grass hummock to create a scent mound. Whatever is handy at the edge of the pond, whether it be mud, muck, or rotting vegetation, can be dredged up and carried to the shore to make a pile. The final touch comes when the beaver drags its anus over the mound and deposits urine and secretions from its anal glands and castor sacs. The smell is not unpleasant, but it’s hard to describe. It reminds me of a horse barn, but it has also been compared to musk, human sweat, cheese, fruit, leather, birch beer, or some combination thereof. Scent mounds are most often created in spring, and the distinctive odor can persist for weeks.

If ponds and small streams aren’t available, beavers take up residence in creeks and rivers. But these habitats are subject to regular flooding, and the volume of flow during high water would destroy dams and lodges, so river beavers make their homes in the stream banks, digging underwater entrances and excavating living spaces above water level. If beavers are living in a river you may find peeled sticks, cut stumps, and scent mounds along the riparian margin. Another good clue is tracks in silty or muddy stream margins.

The tracks in the photo below were made by a beaver walking from lower right to upper left. The large hind prints make a wide zig-zag, starting with the left rear in the lower right corner. As in other four-footed walking trails, there are two footfalls–a front and a rear from the same side–at each zig or zag, but the front prints are mostly covered by the larger rear prints. All, that is, except for the two tracks at the upper left. The larger print above is the right rear, and next to it, just below, is the much smaller right front. Some of the rear prints may remind you of the tracks of a large bird. That’s because beavers often touch down lightly or not at all with their two inside toes, so the outer three toes make the most prominent impressions. But the heel marks behind the toes (as well as the wide palm areas at the bases of the toes) tell us it was a beaver, not a bird.

Whether they’re pond beavers or river beavers, at some point the animals will have exhausted the local food supply and will be forced to relocate to a better situation. If dams and lodges are not maintained water levels will fall. Chewed stumps and peeled sticks will weather to dull gray. Even though they aren’t fresh, these signs will persist and provide clues to the past presence of beavers.

But an abandoned beaver pond can offer its own discoveries. The amount of material amassed to form a dam or a lodge can only be appreciated after the water is drained. The exposed mud can be a great place to find the tracks of other creatures. And old beaver ponds provide great opportunities to find beaver scat. The animals normally defecate in the water, so seeing fresh scat is rare. But once the water has drained out, scats may be left on the sloping inner sides of the dam and the perimeter of the pond. Beaver scat is oblong and can be anywhere from 1/2 to 1 1/4 inches in length. The fibrous content is easy to see in the photo below–a beaver needs to chew through lots of bark and wood to get enough nutrition.

I never get tired of visiting beaver sites, because there’s always something new to discover. Whether it’s the prodigious size of a felled tree, the clever way the animals engineer channels to make transporting logs easier, or a muddy stream margin decorated with the tracks of beavers commuting to and from work, it’s always fascinating. Beavers lead complex lives and show great ingenuity in dealing with their surroundings, and the signs they leave can give us a window into their cleverness and adaptability.

Fisher Frolics

After a long absence fishers have returned to our northeastern forests and made themselves completely at home. These medium-sized members of the mustelid family can travel miles in a single day at their habitual loping gait, shown in the photo below (direction of travel toward the upper right). At the lower left you see four separate prints; the sequence, starting at the left, is left front, left rear, right front, right rear. The next set is also made up of four prints, but it looks like just three because the left rear fell mostly on top of the right front. By the way, the arrangement you see on the ground is not the same as the order of footfalls, which is left front, right front, left rear, right rear for both groupings.

The addition of fishers is a benefit for our ecosystems, but aside from that, having fishers in the woods makes for some interesting tracking. If you follow fisher trails you may come upon spots, such as the piece of wood in the next photo, where the snow has been strangely disturbed and smoothed. A fisher came in from the left and rubbed its belly over the wood, depositing chemical signals from the scent glands in its skin. Fishers usually choose protruding objects for marking, and the process can involve some amazing bodily gyrations. Rubs are sometimes topped off with a little urine or scat, and the finished creations serve to communicate territorial claims or availability to potential mates.

Fishers are drawn to trees, and when travelling they often move from one tree to the next to investigate for the presence of squirrels, one of their principal prey items. So it’s no accident that the fisher that made the trail below headed directly to a tree. The animal was travelling at a double-register bound, leaving a string of paired impressions separated by relatively long spaces. A bounding fisher covers the spaces between tracks in graceful arcs and lands on its front feet almost, but not quite, simultaneously. As it lands it draws its body into a tighter curve, and the front feet lift off just as the hind feet come in to land where the front feet were. The animal then takes off from its hind feet in another arcing leap. By bringing the hind feet into the same holes made by the front feet the fisher conserves its energy when travelling in deep snow. Note that one of the impressions leads the other, and that the two hollows are close together and relatively large. Squirrels, and most other animals, also alter their gaits in deep snow for more efficient movement. If a squirrel had bounded toward the same tree its trail would also be a sequence of double impressions, but each hollow would be smaller and the two would be mostly even with each other and more widely separated.

Fishers are expert hunters. It’s rare to find a kill site, but it’s not uncommon to find a trail that reveals a successful hunt. In the photo below the prints of a bounding fisher go from left to right across the middle of the frame. Above each group of tracks you can see a slightly curved line carved into the snow. The fisher was carrying a prey animal in its mouth, probably gripping the back of its victim. Something dangling to the side, a foot or an ear, brushed the snow each time the fisher landed. Such marks can fall outside the trail or within it, but they always occur at regular intervals in synchrony with the predator’s gait. Random gouges made by wind-blown leaves or other objects may fall in or near a trail, but they don’t repeat in synchrony with the track groups the way the marks of a prey item being transported do.

Winter is mating season for fishers, and when a male and female come together the story is recorded in the snow. If you come across a wild-looking collection of tracks like those in the photo below check for size differences. Male fishers are generally almost twice as large as females, and their tracks reflect their greater size. In the photo, male and female tracks are mixed together near the tree, but the smaller tracks of the female can be seen by themselves at the lower left. This female was probably receptive (not always the case) because their prints were mixed together over a wide area.

Looking carefully I found some nice prints, shown in the next photo, which showed the size difference. A small female track lies to the left of a much larger male track, both heading from left to right.

I’ve already mentioned the fisher’s affinity for trees. The animals are excellent climbers, able to scale vertical tree trunks to get into hollows sheltering squirrel nests or attack porcupines clinging to upper branches. A fisher’s rear feet can rotate 180 degrees, allowing it to grip with its rear claws when descending head-first. You may find fisher trails that lead to and end at trees the way squirrel trails often do. And sometimes, if the snow is deep and soft, you might find a place where a fisher skipped the downward climb and leapt from the tree trunk. In the photo below a fisher jumped from a tree outside the frame at the upper right and landed in the upper right quadrant. There’s a rectangular hole made by the fisher’s body with four pits at the corners made by its four legs. To the right of the hole its tail made a curved gouge. Its first bound can be seen in the lower left quadrant.

When trailing fishers you might have to keep at it for a while–it’s amazing how much distance the animals can cover in a single hunting or mate seeking episode. But if you’re persistent you’ll be rewarded with fascinating evidence of of their daily activities.

Looking On The Bright Side

The leaves are down, and the colorful spectacle of autumn is behind us. The forest has gone from a kaleidoscope of color to a narrow spectrum of browns and grays. But wait, what’s that pale streak glinting among the tree trunks? If you look closely you can see it in the center of the featured photo. Moving closer we can see that it’s a buck rub, bright wood laid bare by a hormone-driven male deer. This is rutting season for whitetail deer, and the bucks are roaming the landscape seeking receptive does. They leave their calling cards on living trees–anything from very young saplings to substantial trunks 8 inches or more in diameter. To make a rub the animal lowers its head and rakes its antlers up and down against the stem. Rough areas around the bases of the antlers work like files to abrade the outer bark down to the light colored sapwood.

The photo below is a close-up of the rub in the first photo. Rubs are usually between one and four feet above the ground, and their edges are often rough or stringy. Gouges made by the short tines near the antler bases are often present–look for them just above the debarked area. The brightness of the freshly exposed wood is what attracts our attention, and it may do the same for deer. But buck rubs also carry scent messages, deposited when the animal rubs its forehead against the newly bared surface. We’re not equipped to detect these chemical signals, but to a visiting doe they convey a wealth of information about the age, health, and even individual identity of the rub maker.

The light colored areas in the photo below have also been denuded of bark, but this wood was exposed by feeding rather than by rubbing. A porcupine climbed these yellow birch trees and chewed through the outer bark to get at the cambium, the living cells that produce both bark and wood during the growing season. There’s no mistaking this example for a buck rub, but porcupine chews are sometimes found close enough to the ground to be confusing. In both cases the light wood stands out against the bark, but there are several clues that distinguish rubs from chews.

Instead of a smooth surface, wood that has been exposed by porcupine feeding is textured by tooth grooves, and the margins are more irregular, as in the photo below. The tooth marks are just deep enough to reach the nutritious tissue, and are organized with a neatness that speaks of feeding efficiency. Along the margins of chews there are often tooth marks instead of the stringy fibers that mark the edges of rubs.

Beavers, like porcupines, rely on the cambium of woody plants for much of their winter diet. Being larger than porcupines, beavers’ wider incisors give their chews a more robust appearance. And rather than climb to access food, beavers bring the food down to their level by felling trees. The beaver that felled the log in the photo below stood on its back feet to feed, anchoring its upper incisors in the bark and drawing its lower incisors upward to scrape up the cambium. It moved systematically along the log, leaving the row of shallow upper incisor digs in the bark and the longer lower incisor marks below them. Like the porcupine, the beaver penetrated just deep enough to scrape up the nutritious cambium.

Not all bark chewers show this kind of efficiency. The sumac stem below was chewed by a rabbit, and its ragged appearance contrasts with the more orderly work done by beavers and porcupines. Rabbits only feed on small stems, and their chews show varying depths of penetration with projecting splinters of bark and wood. Like beavers they are limited to what they can reach from the surface they’re standing on, but if there’s a deep snow pack or heavy snow that bends branches down, rabbit chews can be found in some surprising places.

Here’s another kind of feeding that might catch your eye in the autumn woods. Woodpeckers worked on this standing dead tree to get at the insects in the outer layers of wood. The beak strikes left pits, partially lifted slivers, and gouges (best seen on the right edge of the tree). This kind of woodpecker work can be located at any height, and may even be found on downed logs, but unlike the previous examples, it only occurs on dead trees.

Here’s a final example of eye-catching brightness. As the weather gets colder, squirrels leave their leafy tree-top dreys and make nests in hollow trees or other protected places. They gather fibrous bark for nest lining, and in the process, leave freshly debarked wood for us to find. The dead, fallen branch in the photo below was stripped of its fibrous inner bark by a squirrel. Although there’s a vague resemblance to a buck rub, the position of the branch and its non-living status indicate squirrel work rather than deer.

When squirrels harvest fiber from woody plants they may leave another clue. In the photo below you can see the paired marks of a squirrel’s incisors. Much of the bark removal is done by pulling up long strips, but occasionally the squirrel leaves a bite mark as it grasps the bark with its teeth.

Squirrel stripping is also found on living stems–I’ve seen it on honeysuckle and red cedar–and these are more likely to be mistaken for buck rubs. But areas shredded by squirrels are often in places a deer wouldn’t be able to reach, higher on a trunk, within multi-stemmed shrubs, or on stems guarded by projecting branches. Deer prefer sites with straight stems and unobstructed approaches, and any small branches or twigs are usually broken off by the vigorous action of making a rub.

I love this time of year–the leaves are down, and I can see for greater distances through the trees. Many signs of animal activity are hidden by fallen leaves, but others have become more visible. And every once in a while a bright patch shining among the duller tones draws me in and opens up a new and interesting discovery.