What Do Claw Marks Tell Us?

Claws, like hair and feathers, are made up of proteins called keratins and are characteristic of mammals, reptiles, and birds. In mammals claws evolved into a variety of forms, including fingernails and hooves, but it’s the hard, tapered appendages we consider true claws that are the focus of this post. The marks they make in tracks can tell us a lot about the lifestyles and behaviors of their owners.

The gray squirrel right and left front tracks in the photo below (direction of travel toward the left) show conspicuous claw marks. The tiny pricks made by the claws tell us they’re quite sharp, as we would expect in an acrobatic climber like a squirrel. Behind each claw mark is a toe impression, and behind the toes there is a tight group of middle pads. Two heel pads lie at the back end of the track. The combination of sharp claws and protruding toe, middle, and heel pads is what gives the gray squirrel its excellent climbing ability.

There’s another interesting feature in these prints: on the inner side of each set of heel pads there’s an impression of the vestigial fifth toe, something not often seen.

Porcupines, although not as graceful as squirrels, are also good climbers, and their feet are equipped with impressive claws. The photo below shows three sets of front and rear porcupine tracks, all heading toward the upper left. At the lower right you see a left rear track with a left front track above and to the left of it. Almost directly above those there’s a right rear print with a right front print above it. At the upper left there’s another pair of left front and rear prints. In each set the hind track is the larger of the two. The spaces between the claw marks and the oblong sole areas appear at first glance to be unoccupied– porcupine toes frequently don’t register in tracks. But if you look closely you can see faint toe impressions in the front tracks. You’ll notice that the claws of the front feet make marks a little farther forward compared to those of the rear tracks.

Fishers are also good climbers, so it’s not surprising that their tracks show the marks of sharp claws. The next photo shows the left front print of a fisher, oriented toward the left, with narrow claw gouges at the tips of the toes. But fishers don’t just use their claws for climbing–these animals are predators, and their sharp claws are essential for catching and subduing prey. The five toes, each tipped with a claw, make a lopsided crescent, and the middle pad and heel area make up the rest of the print.

Claws also come in handy for digging. Striped skunk tracks, like the left front print shown below, have prominent claw marks which extend well ahead of the toes. The claw impressions are more robust the ones in the first photo–not very good for climbing but hefty enough to make good digging tools.

The presence or absence of claw marks is sometimes considered diagnostic for track identification, but, like many aspects of tracking it’s not an absolute. The next photo shows front (lower left) and rear (upper right) prints of a gray fox, direction of travel from right to left. Gray foxes have semi-retractable claws, and prints without any claw marks, like the ones below, are common. The same goes for bobcats and house cats, which have retractable claws.

But if a gray fox needs extra grip it can extend its claws, making tracks that look like the ones in the next photo. The larger front track is on the right and the smaller hind track is on the left, and the direction of travel is toward the top. By extending its claws the animal was able to gain more purchase in the soft mud. The marks vary in thickness because of the varying depth of the tracks and movement of the toes, but the rear track shows slender grooves which are consistent with claws that are very sharp. Although not as arboreal as squirrels and fishers, gray foxes are good climbers. Their sharp claws assist not only in climbing but also in capturing prey. Claw marks are sometimes seen in feline tracks under similar conditions.

Animals with retractable and semi-retractable claws are able to draw their claws completely or partially inside their toes. But all animals, even those with robust claws, can control their position by flexing or extending the toes. The front track in the next photo (made by a coyote walking toward the left) shows beautiful impressions of the toes and the middle pad, but no claw marks.

A coyote moving at a side trot toward the right made the front (upper left) and hind (lower right) tracks in the photo below. Claw marks lie ahead of all four toes of the front track, and ahead of the leading toes of the hind track. The depths of the tracks made at the walk and at the trot are similar, but the toes were flexed enough at the faster gait to make most of the claws dig into the sand.

Partial sets of claw marks often occur in wild canines. The coyote front (left) and hind (right) prints (direction of travel toward the left) in the next photo show tiny pricks ahead of the leading toes, indicating that just the tips of the two leading claws in each print touched down.

Dog tracks, like the front print (direction of travel toward the right) shown below, are more likely to have blunt, robust claw marks that routinely show in tracks, even when walking or at rest. In the photo the claw marks have rounded leading edges due to their wider tips. In addition to the blunt claw marks, the more rounded overall shape and the outward angles of the inner and outer toes are indicators of domestic dog rather than coyote or fox.

To further drive home this point, contrast the dog print above with the red fox front track (heading toward the right) in the next photo. The red fox claw marks are slender and pointed, and they’re oriented straight ahead–or even slightly inward on the leading toes. The claw marks of the inner and outer toes are tucked tightly against the sides of the leading toes. It would be rare for a dog track to show this kind of compactness in soft mud.

There’s a explanation for the differences between the claws of dogs and wild canines. Coyotes and foxes spend their lives on the move, so their claws are constantly shortened and shaped natural abrasion. Dogs spend more time resting and less time travelling over the landscape, so their claws are not naturally worn down and must be trimmed manually. Consequently, the claws of dogs are usually longer and blunter than the claws of coyotes and foxes. Similarly, the feet of wild canines have excellent muscle tone, and this creates tracks that are tight and compact. The less fit feet of dogs spread out more and leave tracks in which the toes and claws often angle outward.

Cottontail rabbits and snowshoe hares have thick fur on the bottoms of their feet, so claw marks don’t usually show in tracks. In the photo of snowshoe hare tracks below, right and left hind tracks (oriented to the right) take up the center, a smaller left front track heading toward the left lies on the left, and part of a left hind track, also heading toward the left, can be seen at the upper right. The fur thins out somewhat in the summer, but even in July when these tracks were photographed, it was thick enough to muffle the claw marks in the rear tracks. They do show just a little at the tips of the toes in the front track.

But rabbit and hare claws are surprisingly sharp. Rabbits defend themselves with strong kicks, and the claws can inflict real damage. Claws also help the animals to grip the ground in the weaving and dodging escape maneuvers that help them evade predators. In the next photo you see two rear prints made by a leaping cottontail rabbit. The claws dug in deeply to give the rabbit a powerful take-off.

Why claw marks appear the way they do, why they’re present or missing, how they’re used by different animals–these are all questions that deserve our attention. Every track we find presents opportunities to explore this topic further.

When Animals Break the Rules

Bobcats walk in direct register. Deer walk in indirect register. Red foxes have a bar in the middle pad of the front foot but not in the rear foot. Fishers move at a lope or bound. Cats have four toes. These and other statements are the received wisdom of the tracking literature. But are they always true? As we’ll see in the following paragraphs, there are exceptions to even these seeming inviolable maxims.

Let’s start with walking deer. They do indeed place their feet in indirect register most of the time. The photo below shows tracks made by a deer walking in indirect register toward the upper right. At the lower left you see a left rear print partly superimposed on the left front print. Roughly in the center of the photo there’s a right front track with a right rear track partly on top but a little behind. At the upper right the left rear track sits a little behind and slightly to the inside of the left front track. The zig-zag pattern is the signature of the walk, and each set of impressions is made up of the front and rear prints from the same side. It’s the partial superimposition of the two prints that makes it an indirect register walk.

Direct registration occurs when the rear print is perfectly superimposed on the front print. As the next photo (the trail of a white-tail deer walking from right to left) shows, this does occur, especially in younger deer.

As this close-up (from a different trail from the one shown above) shows, direct registration makes it hard to tell if the track was made by two feet or just one. Among all the deer trails you see, there are bound to be a few that show direct registration.

Bobcats are said to walk in direct register, but again this is not an absolute. The bobcat trail in the photo below (direction of travel from left to right) is in very obvious indirect register. The zig-zag pattern indicates the walk (and as a side note, you can see how much narrower it is than the zig-zag of the walking deer). In each set of two prints the hind print falls partially but not perfectly on the front print.

In case you have some doubts, a close-up from a different part of the same trail will convince you that this is indeed a bobcat trail.

Was the bobcat distracted? Or tired? We’ll never know. Later in the same trail the animal switched to an overstep walk, a gait that’s often seen in bobcats, so its overall behavior didn’t throw up any red flags.

The next photo shows a direct register trail made by a bobcat walking toward the upper left. In each impression you see what appears to be a single track, but is actually two tracks, the rear print superimposed on the front print. And here’s another interesting aside: The concave hollows around the tracks are not connected to registration, but were instead made by the thick fur covering and surrounding the bobcat’s feet. They’re known as hair halos.

Staying with felines for the moment let’s look at toes, which are supposed to be four in number (counting those which normally touch down) in both wild felines and domestic cats. In the next photo you see some tracks which are clearly feline, but don’t fit the four-toed paradigm. My friend Ben Altman has two house cats, both of which have feet with more than the standard four toes. This is called polydactyly and it’s caused by genetic mutations. It’s not uncommon in domestic cats but is rare in wild felines.

Photo by Ben Altman

We’re told that fishers prefer to move at a lope or a bound but this, too, is not always the case. In the next photo you see a fisher trail going from lower left to upper right and a red fox trail moving from bottom to top. The fox is travelling at a lope, a gait similar to the habitual gait of a fisher. But what’s the fisher doing? Definitely not the typical lope or bound. Because the front tracks of the fisher are larger than the hind tracks we can work out what the gait is. At the very lower left in the fisher trail there’s a right rear print, and the sequence of the next eight tracks (up until the pattern changes at the upper right), is: right front, left front, right rear, left rear, right front, left front, right rear, left rear. This extended pattern shows that the fisher was speeding along at a flat-out gallop. Fishers don’t often do this, but they obviously can. Something alarming must have pushed the animal into unusual speed.

One of the absolute statements we often hear has to do with red fox tracks. The going wisdom is that there’s a bar or crescent shaped depression in the middle pad of the front track, but not in the rear track. A ridge of horny skin that protrudes through the hairy covering of the pad is the source of the bar, and it’s supposed to be absent from the middle pad of the hind foot. Here’s what we’re accustomed to observing–notice the bar in the front middle pad (on the left) and the absence of the bar in the rear middle pad (on the right).

But on rare occasions we see red fox tracks with a bar in the middle pad of both the front and rear prints. Here’s one example. The front track is at the lower right and the rear track is at the upper left.

Just so you don’t think this is a one-off, here’s another example. The front print is in the upper right and the rear print, with a reduced but visible bar, is at the lower left. (The carboard square in the upper left is one inch on a side.)

Raccoon trails are a common find, and the next photo shows the way a raccoon pace-walking trail is supposed to look. What we expect to see is sets of two prints, each set a front from one side and a rear from the other side. In the photo the direction of travel is from lower left to upper right, and the hind prints are larger than the front prints. Starting at the lower left, the first set is left front with right rear, the second is right front with left rear, the third is left front with right rear, and the last is right front with left rear.

The raccoon which made the trail in the next photo (direction of travel lower left to upper right) appears to be in serious violation of the rules of tracking. Instead of alternating front and rear tracks there are two sets with left rear and right front, then two sets with left front and right rear, and again two sets with left rear and right front. Can a raccoon even do that?

The answer is, no, a raccoon can’t do that. But two raccoons, one following close behind the other, can do that. It you focus on every other set of two you’ll see a normal raccoon pace-walk trail. So what appeared to be an impossible situation turns out to be a perfectly normal, albeit unusual, event.

We need to learn what’s most common in animal tracks and trails, but we also need to think out of the box when faced with uncommon track and trail patterns. Whether it’s two animals conspiring to create a confusing trail, or one animal with an unusual track or behavior, nature can always throw up something we’ve never seen before. It may take days, weeks, or even months to understand what we saw, but that’s part of the excitement of tracking. It’s why we keep coming back for more.

Zig-Zags

In past posts I’ve used the term zig-zag to describe certain track patterns. In this article I’d like to delve more deeply into how zig-zags arise and what they can tell us about the animals that make them. When we humans walk in a relaxed, natural manner we place our feet in a zig-zag pattern because each foot falls to its own side of the line made by our moving center of gravity, the center line of the trail. It’s easy to verify this: Just walk naturally in snow or mud or on a dry surface with wet feet and then look at your tracks. The same logic applies to birds, so we often see patterns like the one in the next photo, made by a turkey walking from left to right. Each print angles inward, which helps to distinguish right from left. The sequence, starting at the left, is right, left, right, left, right.

Two legged zig-zags are pretty straightforward, but four-footed animals also create zig-zags, and it’s not as easy to understand how a four-footed animal can do that. Watching animals helps, but it’s hard to follow foot placement when animals are moving in real time. Fortunately for us twenty-first century trackers, there’s a tool that can bridge the gap–the internet. So let’s take a look at a video of a horse. If you click on this link: Bing Videos, then click on horses walking youtube and start the video, you’ll see a horse walking in slow motion. Notice that as each front foot leaves the ground the rear foot on the same side comes down in the spot just vacated by the front foot. The video doesn’t show the pattern on the ground, but it’s easy to see how the horse leaves a series of double impressions, each one a front track overlaid by a rear track. And since the feet on each side fall to their own side of the center line, the overall pattern is a zig-zag. The trail in the next photo, made by a deer walking from bottom to top, is a good example of a zig-zag made by a four-footed animal.

But all zig-zags aren’t the same. The physical characteristics of animals vary, and this affects the kinds of patterns they leave when they walk. There are also different types of walks, with differing relative placement of the front and rear tracks. In the photo above the walk is an almost perfect direct register gait, meaning that the rear feet fell almost exactly on top of the corresponding front tracks. The next photo shows tracks made by a woodchuck walking from lower left to upper right (and just below the second impression, tracks of a squirrel bounding toward the bottom). The trail is more variable but the tracks are mostly in indirect register, meaning that the rear tracks fell partly but not completely on top of the corresponding front tracks. Starting at the lower left the track sequence for the woodchuck is: right rear on right front, left rear on left front, right rear, right front, left rear on left front. Even in this more irregular trail the zig-zag is apparent.

The width of the zig-zag, known among trackers as trail width, varies from one species of animal to another. To measure trail width, find a relatively straight part of the trail and imagine or draw out two parallel straight lines that just touch the outsides of the alternate sets of tracks. Then measure the perpendicular distance between the lines. This is diagrammed in the next photo of the indirect register track pattern made by a walking opossum heading toward the upper right.

In the next photo you see a trail made by a gray fox walking from right to left. The trail has a different look from the opossum and woodchuck trails, both because of its narrower width and also because the fox’s step lengths are longer. But the zig-zag is still apparent. Trail widths, combined with step length, can be helpful in identification, since chunky animals like woodchucks and possums make wider trails and take shorter steps than slimmer, longer-legged animals do. And trail widths are especially important when you’re considering animals with similar step lengths. For example, trail widths for a walking coyote are generally between 4 and 5 inches while trail widths for deer moving at a walk range from 5 to 10 inches. Even when the tracks are degraded or obscured by collapsing snow it’s usually possible to differentiate between a coyote trail and a deer trail.

Animals find it harder to move in deep snow, but when they’re walking their trails still show the zig-zag pattern. In the photo below a red fox walked from bottom to top leaving a zig-zag arrangement of deep holes in the snow.

All of the gaits discussed above (and the one the horse was doing in the video) fit into what I call the regular walk–also called the diagonal walk in the tracking literature. But that’s not the only kind of walk animals can do. A common variant is the overstep walk. To see a dog doing the overstep walk click on this link: Bing Videos and then click on dog gaits youtube and start the video. The recording shows a dog walking at actual speed followed by the same sequence in slow motion. If you keep your eye on the spot just vacated by a front foot you’ll see the corresponding rear foot come down a little past it. (This video also does a nice job with the amble, equivalent to the pace-walk of the raccoon, and the trot.)

The interesting thing about the overstep walk is that the pattern of tracks on the ground also makes a zig-zag, but the points of the zig-zag consist of sets of two prints, front and rear from the same side, rather than the impressions of two superimposed tracks. In the next photo you see an overstep pattern made by a house cat moving from lower right to upper left. Because a cat’s front tracks are wider and shorter than the rear ones we can see that in each set the front track is behind the rear. The sequence, starting at the lower right, is: right front, right rear, left front, left rear, right front, right rear. Among animals that are habitual walkers, overstep walks are common.

Another variation you’ll come across is the understep walk. The next photo shows the trail of an opossum doing an understep walk, heading from the lower left to the upper right. Again, the prints are arranged in sets of two, each set the front and rear from the same side. In each pair the hand-like hind track, with its thumb pointing inward, lies behind the front track with its more evenly spread toes.

We sometimes find zig-zag walking patterns in the trails of animals that aren’t habitual walkers. Fishers move mostly in bounds or lopes, but they walk when extra caution is needed or when the footing isn’t secure. The trail in the photo below was made by a fisher walking, mostly in direct register, from lower right to upper left.

Walking trails are less common for minks than for fishers, and for minks it seems to be mostly about the animal’s dislike of unstable surfaces. In the next photo a mink walked from right to left through mud (looking pretty dry in the photo but probably much wetter and slipperier when the tracks were made), leaving sets of paired tracks. But which walk is this, overstep or understep? We can tell because the middle toe in the mink’s hind print usually angles a little to the outside. So the sequence, starting at the right, is: left rear, left front, right rear, right front, left rear, left front, right rear, right front, and this is an understep walk.

White-footed mice are even less likely to walk than minks, but the next image attests to the fact that they do it on rare occasions. A white-footed mouse walked from bottom to top, leaving sets of paired tracks. The four-toed front prints lie behind the five-toed rear prints in each set, so the mouse was doing an overstep walk. The trail both before and after the walking part was on drier footing with normal mouse bounding patterns, so it was the wet mud that made the mouse shift to a walk.

Many animals get around mostly at a walk, and zig-zags abound in the tracking world. The details of the patterns can tell us a lot about the nature of the track maker. But the sight of a zig-zag for an animal whose default gait is not the walk is an even more compelling call to investigate. In addition to their help in species identification, zig-zags can tell us how animals interact with each other and with their surroundings. In this post we’ve only made a start. There are other kinds of zig-zags, and even patterns that look like zig-zags but aren’t. I’ll keep these topics for a future article. In the meantime, follow the zig-zags wherever they lead.

A Family Resemblance

Rodents are the most common mammals on earth, in both number of individuals and number of species. They are also the most diverse, with lifestyles that range from semiaquatic through fossorial (adapted for digging and living mostly underground), terrestrial, arboreal, and even semi-aerial (gliding flight). But don’t let that mind-boggling profusion intimidate you. In our region many of the most common rodents are members of the squirrel family, a group that is remarkably uniform in physical features. Fortunately for the tracker this uniformity extends to track details and track patterns, and familiarity with the key features will aid in the recognition of any member of the group.

In the photo below you see tracks made by a gray squirrel bounding toward the top of the photo. The five-toed rear tracks lie in the upper part of the image, and the four-toed front tracks can be seen in the lower part. Claw marks show as tiny pricks ahead of the toes of both front and rear tracks. Notice that the toe pads of the three middle toes of each hind print are lined up close together, while the inner and outer toes lie farther back and angle to the sides. Behind the toes you can see a C-shaped grouping of middle pads. The front tracks have only four toes, but again the central two point more forward while the outer and inner ones point to the sides. C-shaped arrays of middle pads sit behind the toes of the front prints, and heel pads (there are two on each foot, but it’s hard to tell in this image) are situated behind the middle pads.

Bounding is the most common gait for most members of the squirrel family, and the resulting pattern is another recognizable trait of the group. In the photo above the two rear prints are almost even with each other and are set wider and well ahead of the front ones, which are also nearly even with each other. This positioning may seem odd, but there’s a logical explanation. At each bound the animal lands on its front feet and draws its rear feet forward so they pass outside of its front legs. As the front feet lift off the rear feet touch down–ahead of the spots the front feet just left–and propel the next leap.

The next photo shows a bounding pattern made by a red squirrel, again travelling from bottom to top. There’s a striking similarity to the first image of the gray squirrel tracks, in both overall arrangement and track details. Because the substrate was softer the rear feet of the red squirrel (in the upper part of the frame) sank in deeper–notice that the whole length of each of the three middle toes registered as a narrow groove. Nevertheless the three toes are closer together and oriented more forward than the outer toes, just as they were in the gray squirrel tracks. In the front tracks of the red squirrel (in the lower part of the photo below) the claws show as grooves rather than pricks, but the overall structure is similar to the front tracks in the preceding shot. If you look at the red squirrel’s right front print (at the lower right in the photo below) you can see clear impressions of the two heel pads.

The chipmunk tracks in the next photo (again bounding toward the top) are consistent with the features we saw in the red and gray squirrel prints. In the right rear print (in the upper right quadrant) you can see that the middle toes are closely grouped and the inner and outer toes are angled to the sides. The left front track (in the lower section a little below and to the left of the right front track) shows the four clawed toes, the C-shaped grouping of middle pads, and the two heel pads.

Mud is great, but winter is also fine for seeing squirrel family connections. In the photo below of red squirrel tracks in snow (bounding toward the top, of course) you see the same characteristic features you saw in the mud tracks. As sometimes happens, the heel area of the right rear foot (at the upper right of the photo) registered as a flattened area behind the middle pads. (If you look back at the first photo of the gray squirrel prints you’ll notice that the heel area of the left rear foot also made a slight impression.) There’s a variation in the arrangement of the front tracks, with the right front well behind but the left front farther forward. This kind of foot placement is often seen in squirrels, but is less common than the more four-square pattern.

Flying squirrels possess gliding membranes (the patagium) which extend between the front and rear legs, and because of this the rear feet can’t pass as far ahead of the front feet as they do in red or gray squirrels. In the next photo you see a bounding pattern made by a southern flying squirrel (oriented toward the top) in which the front prints are situated between rather than behind the rear prints. In northern flying squirrel trails the front prints often lie ahead of the rear ones. Another special flying squirrel trait is the thick covering of fur on the undersides of the feet. Because of this flying squirrel prints rarely show the crisp detail found in the tracks of other members of the squirrel family. But even with these differences, flying squirrel tracks will remind you of the tracks of other squirrels.

In the next image you see a bounding pattern made by a woodchuck. If you didn’t realize that woodchucks belong to the squirrel family, the familiar features of their tracks should make that clear. Woodchucks are more likely to walk than bound, and when a woodchuck does bound it usually places its front feet in a staggered pattern rather than even with each other, as in the photo. Nevertheless, the overall arrangement and the track details are consistent with those of its relatives.

To complete the picture for small rodents in the Northeast we need to add a few creatures that don’t strictly belong in the squirrel family but leave distinctly squirrel-like prints. These include white-footed mice, meadow voles, and their allies. I include mouse and vole allies because each one represents a group of closely related species which are difficult to distinguish from tracks alone.

First, let’s look at tracks of the white-footed mouse, shown below in a bounding pattern heading toward the upper right. In spite of its smaller size, the animal made tracks that are uncannily similar to the tracks in the first three photos. If I didn’t tell you that an individual rear print is just half an inch across you’d be hard pressed to tell these tracks from squirrel tracks.

Vole tracks also show striking similarities to the tracks we’ve already discussed–but with a few important differences. In the next photo you see tracks made by a meadow vole bounding from bottom to top. The track sequence, starting at the bottom, is: right rear, right front, left rear, left front. This staggered arrangement is common in vole trails and differs from the more consistent four-square bounding patterns usually seen in white-footed mice and tree squirrels. Voles can leave more regular bounding patterns, but they often move at something between a bound and a lope and their track patterns tend to be more variable. The toe impressions in vole tracks also tend to be more finger-like than the toes of mice. In spite of these differences the tracks of voles will remind you of mouse and squirrel tracks.

This is all well and good, you may say, but if these creatures are so similar to each other, how can I tell them apart? I’ve mentioned a few variations that can be helpful, but often the most useful trait is size. There’s a neat size progression, and although there’s some overlap between adjacent species it’s usually possible to make an identification with a few measurements combined with other clues. There are two dimensions to consider: track width (more reliable than track length) and bounding trail width (measured perpendicular to the direction of travel across the widest part of a bounding pattern). I’ll focus on the big picture rather than giving an exhaustive account of the numbers–detailed measurements can be found in any good tracking guide. White-footed mice and the smaller voles (woodland voles, for example) are the tiniest of the lot, and meadow voles are slightly larger. Chipmunks come next, and southern flying squirrels are slightly larger than chipmunks. Northern flying squirrels outweigh their southern kin, and red squirrels are larger yet. Gray squirrels beat out red squirrels, and woodchucks complete the series. These differences in body size are reflected in differences in track and trail dimensions, so a few measurements are usually sufficient to clinch an ID. Even when the tracks you’re dealing with are in the overlap zone there are usually other clues that can point toward an identification. And when all else fails, it’s okay to say you just can’t be certain. If you treat each situation as a learning experience, you’ll find yourself stumped less and less often.

The Marvels and Mysteries of Deer Tracks

When we think of deer tracks what usually comes to mind are heart-shaped prints like the one shown in the photo below. The paired toes together form the overall shape, and the pointed ends of the toes point forward. In tracks like the one in the photo, the ridge that runs front to back between the toes may be as important for identification as the toes themselves. In fact, the tell-tale ridge may still be visible even when most other track details have been destroyed by weathering or melting.

The specialized feet of deer are very different from those of their ancient five-toed ancestors. The two large toes that make up the print in the photo above are analogous to the third and fourth fingers of our hand, but the toe bones (analogous to our finger bones) are highly modified and are enclosed in tough, protective structures. There are two smaller toes, the dewclaws, which are analogous to our index and pinky fingers and sit higher up on the back of the leg. The innermost toe (analogous to our thumb) was completely lost in the course of evolution. You can see the arrangement of the large primary toes and the smaller dewclaws in the next photo of the front feet of a deer.

Photo from Deeryproof

Deer hooves are superbly adapted for running and jumping. Their keratinaceous outer sheathing combines with resilient internal tissues to cushion the feet against impact. The dewclaws don’t touch the ground most of the time, but with faster movement or on softer surfaces they can make contact to provide more support. In the next photo you see tracks made by a deer moving toward the right on a relatively soft substrate at a slow gallop. There’s a front print on the left and a hind print on the right. In each track the marks made by the dewclaws sit behind the impressions of the large main toes. (You’ll notice that the dewclaws of the front foot are angled to the sides while those of the rear foot are pointed more to the front.) The feet of deer are small relative to the animal’s size and bear more weight per unit area compared to non-hoofed mammals. This is why deer tracks show up on surfaces that are too firm to reveal the traces of most other animals (a serendipitous side-effect for trackers). It’s also why deer tracks are usually deeper than the tracks of animals like coyotes and bobcats, and why deer are generally less stealthy than mammalian predators.

You can see from the photo above that the two large toes are not always held tightly together the way they are in the first image. Sometimes a “four-toed” deer print can take on a bizarre appearance. In the next photo you see a hind track which has a resemblance to the bounding pattern of a squirrel. The tips of the large toes appear rounded because their points pushed downward under the soil surface.

Here’s an image of the front track of a rapidly accelerating deer in which only the marks of the dewclaws and the tips of the large toes registered.

Even when the dewclaws don’t touch the ground the two main toes may be separated, as in the photo below of a hind foot. Deer can exert muscular control over their toes and are able to spread them when they need more support or stability.

Here’s another shot of a rear track, again with the toes separated.

In the next photo you see some deer tracks I found on a seldom used railroad line. The animal had first walked through some mud and then travelled along the railroad track. It stepped carefully on the ties, and wherever it stepped it left muddy impressions. In the photo the direction of travel is from top to bottom, and what you see are the edges of the hooves printed in mud on the wooden ties. There are two tracks partly superimposed, the front print a little ahead of (below) the rear print.

If the tracks in the previous photo are hard to understand, the next image may help. There’s a front track (at the upper left) and a rear print (at the lower right), and the direction of travel is toward the upper left. The firm sandy base prevented the deer’s hooves from sinking in, and the thin covering of loose sand recorded the track details nicely. The outer rims of the hooves show as curved grooves in the sand, but the inner parts of the hooves barely touched the surface.

Tracks like these are sometimes misidentified as bird tracks, so beware! In fact it’s important to always be fully engaged–even with deer tracks–because, as the preceding photos show, they don’t always conform to our expectations. Every once in a while, among all the typical prints, you may find some that are surprising or puzzling. If you spend some time on these, you’ll gain a deeper understanding of deer tracks, both the common ones and the not so common ones.

Muskrats: Life in Two Worlds

Water and land: they pose very different challenges to the creatures that inhabit them. And yet some animals manage to live in both worlds. The muskrat is a semi-aquatic mammal, at home in the water and comfortable (although not as nimble) on land. The dome-shaped lodges made by muskrats (seen in the photo below) resemble beaver houses, but are smaller and are made with non-woody plants instead of the woody material used by beavers. When conditions are suitable muskrats make bank burrows with underwater entrances. Unlike beavers, they don’t build dams, and they prefer quiet or slowly moving water. Aquatic and semi-aquatic plants make up the largest part of a muskrat’s diet, but the animals also spend time on land harvesting non-woody terrestrial plants. They are also known to consume aquatic animals, including clams, mussels, crayfish, frogs, and fish.

A common sign of a resident muskrat is scat, usually found in small collections on rocks and logs that protrude above the water. These deposits announce a animal’s territorial claim to the pond, marsh, or stream where they’re found. The latrine shown in the next photo is on a large rock at the edge of a river, and it’s unusually large. The quantity and the combination of fresh and weathered scat indicate that a muskrat was actively patrolling its stretch of river.

On land muskrats generally move at a walk. In the next image the direction of travel is from left to right, and because of the snow the animal to placed its hind feet directly in the holes made by the front feet on the same side. A tail mark undulates between the tracks.

When the footing is more favorable muskrats use an overstep or indirect register walk. The trail in the next photo goes from upper right to lower left. Pairs of prints form an overall zig-zag pattern, and in each pair the rear track lies ahead of the front. The sequence, starting from the upper right, is right front, right rear, left front, left rear, right front, right rear. If you’ve noticed that the front prints seem smaller than the rear prints, you’re absolutely correct.

The difference in size is easy to see in the next photo. The right front track is on the left, and the right rear is on the right (direction of travel left to right). You can see all five toes in the front print–the tiny innermost toe is a little nub on the upper edge of the print just behind the full-size toe ahead of it. The four large toes of the front track are connected to the middle pad, and behind that there are two bumps that make up the heel pad. If these characteristics remind you of small rodent tracks you’re right on target. Muskrats are indeed rodents, although they have diverged from other rodents in many of their adaptations. In the rear track five toes can be seen, although the innermost toe impression is just the tip (above the other four rear toes and to the right of the third toe on the front print). The middle pad of the rear print made a partial impression at the bases of the toes, and–as is often the case–the heel pad did not touch down at all.

If danger threatens while a muskrat is on land, it hurries toward the safety of the water at a modified bound or lope. In the photo below you see a typical muskrat bounding pattern, with the smaller front tracks ahead of the larger and more widely set rear prints (direction of travel toward the top). The muskrat’s front feet slid forward into the soft mud, so the tips of the toes lie hidden in the muck. The larger rear feet didn’t sink as far and all five toes show clearly. Except for the relative positions of the front and rear tracks, this bounding arrangement is, again, reminiscent of the bounding patterns of many small rodents.

Muskrats possess a feature that is–as far as I know–unique among semi-aquatic animals: the toes of the hind feet are equipped with fringes of stiff hairs. In the next photo you see a left rear track, oriented toward the top. (There’s also part of a left front print to the lower right of the rear print.) The toes of the rear track are slender and finger-like, and the hair fringes make shelf-like impressions around them. These hair fringes add surface area and enhance the muskrat’s swimming ability. The smaller and un-fringed front feet are more suited to grasping and handling objects.

As you explore wetlands you’re likely to see swimming mammals, and you may find it difficult to know which creature you’re observing. There are clues that can help, starting with size. The smallest are water shrews and star-nosed moles. I’ve never seen shrews or moles swimming, so I’ll just point out that their size means they probably won’t be confused for anything but each other. Of the larger mammals, the ones whose tracks and sign we’re likely to find, the smallest is the mink. Minks swim with their entire body visible above the water, from head to furred tail. Their bodies are long and slim, their ears protrude from their heads, and their tails can usually be seen gently swaying from side to side on the surface. Muskrats are heavier than minks but their chunky bodies are about the same length. They swim with their heads and bodies showing above the water. The muskrat’s hairless tail is flattened vertically and can be seen undulating from side-to-side at the surface. The ears are small and don’t protrude from the head.

Next in the size progression (going by weight) is the river otter, with a body length of two to three feet and a powerful, furred tail that tapers from a muscular base to a small tip. Otters often swim with just their heads showing above water, but they may also undulate up and down or make short, playful swerves and dives. Their ears protrude noticeably from their heads. Our largest semi-aquatic mammal is the beaver, with a body length about the same as an otter but weighing up to twice as much. Beavers swim with most of the body and the tail below the water surface, and their ears protrude from their heads.

Muskrats are one of our most common semi-aquatic mammals. You may be fortunate enough to observe one in its watery habitat, or you may instead find evidence of the its presence. Either way, take time to contemplate the muskrat’s place in the panorama of living creatures and the adaptations that make it so successful.

Seeing the Forest And the Trees: Lessons from Raccoons

Details versus the big picture–in tracking we need both, but sometimes one can get in the way of the other. We can focus too closely on the small details and miss the overall view, or we can see a larger pattern but miss the crucial fine points. The tracks of the raccoon present challenges on both levels, so they can be helpful for balancing both perspectives.

In the photo below you see two raccoon tracks, a left rear (on the left) and a right front (on the right), oriented toward the top of the frame. Both tracks have the five finger-like toes characteristic of the raccoon. Indentations made by the claws can be seen ahead of each toe, and the undivided middle pads show behind the claws. There are also heel impressions in both front and hind tracks. They’re not as deep as the impressions of the toes and middle pads, but they show up because their texture matches the texture of the other parts of the tracks.

Compare the left rear track shown above to the left rear print in the next photo. In the image below the toes are also finger-like, and they’re held even more tightly together, but the middle pad looks different–it’s shaped like a trapezoid rather than a C. There’s also no heel impression.

The next photo shows a right front print. It’s toes are similar to the toes of the right front in the first photo, but they spread less. And the middle pad is not quite the same; instead of being symmetrical it extends farther back on the outside of the foot. Another difference is the lack of a heel impression.

In general front tracks are smaller than rear tracks and have more spread in the toes. The middle pads of front and rear prints also differ: those of the rear tracks are generally broader with more gently curved front edges than those of the front tracks. Because of these differences it’s usually possible to tell front from rear prints in the raccoon.

It gets trickier when the tracks are incomplete. In the photo below of a right front raccoon track (oriented toward the left) only four toes show, and they’re not very finger-like. The middle pad impression is faint, and you need to look closely to see the curved leading edge. This kind of track could easily be mistaken for that of a different animal.

But we don’t want to miss the forest for the trees. The arrangement of a series of tracks is as important as the details in the individual tracks. The image below shows the typical pattern of a raccoon moving at a pace-walk from right to left: tracks in sets of two, each pair composed of a front from one side roughly next to a rear from the opposite side. This is different from the regular walk commonly seen in deer, house cats, dogs, and wild canines, in which the superimposed front and rear tracks from the same side form a zig-zag pattern. In the raccoon trail shown below the details of track structure that were covered in the preceding paragraphs allow us to distinguish front from rear prints. For instance, in the pair of tracks at the upper right the rear print (larger with a broader middle pad) is above and a little ahead of the front print (smaller with a narrower middle pad). The sequence of tracks, starting from the right, is left front, right rear, right front, left rear, left front, right rear. In each pair the rear print is a little ahead of the front. This position isn’t a constant–the relative placement of the two tracks in a pair can vary, but is usually maintained unless the speed or attitude of the animal changes.

With that pattern established, let’s look at an interesting variation. The photo below shows a similar pace-walk pattern, again proceeding from right to left. Although the track details aren’t as clear the relative sizes suggest that the sequence, starting from the right, is right front, left rear, left front, right rear, right front, left rear, left front, right rear. But what are those extra marks? In each of the left rear prints ( the ones in the first and third pair) there’s a deep gouge behind and some light claw drag marks ahead of the actual track. And the right rear tracks (the ones in the second and fourth pair) seem to be connected by continuous drag marks. Grooves and drag marks like these are not usually seen in raccoon trails and indicate that the animal was injured.

This close-up shows the details better.

By the way, you may have noticed a few gouges in the snow in the first pace-walk photo. These aren’t foot drag marks because they don’t connect with the tracks. The best explanation is that the raccoon was carrying something, probably a prey animal, that hung down and touched the snow at every other couplet of tracks. We see this kind of evidence more often in canines and felines, but raccoons will take small mammals if the opportunity presents itself .

Now that we’ve explored raccoon tracks at both detailed and big-picture levels, here’s a final example. When thaws or seasonal changes create seeps in the winter snowpack, raccoons are quick to explore them for edible items. In the photo below a raccoon made two trips between seeps, leaving muddy drips and beautiful mud tracks on top of the crusted snow. The upper trail goes from left to right and the lower one from right to left. In each trail the pace-walk pattern is clear, with the larger rear prints falling slightly behind the smaller front prints. The track details show nicely: the finger-like toes, the narrower middle pads of the front tracks, and the tighter arrangement of the rear toes.

The forest and the trees–both the big picture and the fine details are necessary in tracking. And it’s even more complicated, because there are more than two levels. There are details within details, and larger views beyond large views. The ability to move among many levels is not only essential for effective tracking. It adds depth and excitement to any tracking experience.

Knowing Coyote Tracks

Coyotes are one of our more common predators, but when we find a possible coyote track it can be difficult to identify it with certainty. Could it be a fox? Or maybe a bobcat? And there’s also the possibility of domestic dog. Dog tracks show up almost everywhere and are often mistaken for coyote. In this post I’ll share some thoughts on how to separate coyote prints from some confusing look-alike tracks.

First let’s deal with felines. The bobcat track below is a right front print, oriented toward the top of the frame. Like coyotes, bobcats have four toes and an undivided middle pad, but unlike coyotes (and other canines) bobcat tracks are asymmetrical. They have a leading toe (the second from the left in the photo) and a trailing toe (the right-most one), and the middle pad is canted to the outside. Try this simple test for symmetry: Imagine a vertical line which passes through the center of the track, and then imagine folding the right half of the track over onto the left half. You’ll see that they don’t match up. Now do the same thing with the track in the next photo, a coyote front print, again oriented toward the top of the photo. You’ll see that the right half matches almost perfectly when folded onto the left half.

Bobcat right front track

Coyote right front track

Both the bobcat and the coyote prints pictured are clear and complete, but because of varying conditions some bobcat tracks–especially rear prints–appear more symmetrical, and canine tracks sometimes have an asymmetrical look. Fortunately, there are other features that can help to distinguish the two. An important feature is the shape of the ridges between the toes and the middle pad. In the coyote track the large ridges between the toes and the middle pad form an X, and at the central point of the X there’s a dome. The major ridges in the bobcat track don’t form an X–they could be described as a squashed H or a partly rotated C-shape with some kinks. Another characteristic to look at is the relative sizes of toes and pads. In bobcat tracks the toes are small in relation to the overall track size, and the middle pad is large. In coyote tracks it’s the reverse: the toes are larger and the middle pad is smaller in relation to the overall track size. In the coyote track there are some delicate claw marks, two close together ahead of the leading toes and a lighter one on the left outer toe. Claw marks are absent in the bobcat photo. If more grip is needed a cat may extend its claws, but claw impressions are much less common in bobcat tracks than they are in coyote (or other canine) tracks. Bobcat prints also tend to be rounder, and coyote prints are more oval or egg-shaped.

Then there’s red fox, whose tracks overlap with coyote tracks at the lower end of the coyote size range. The next photo shows a red fox front print, oriented toward the right side. It’s similar to the coyote track in being symmetrical, and in having the canine X and dome, but there are some features that separate it from coyote. The hair that covers the underside of the fox’s foot shows as striations in the toes and middle pad. This hair gets worn down as the season progresses so it may be less conspicuous in late summer and fall, but in early winter a new growth of thick hair develops. Red fox tracks in snow often have a blurry appearance because of the dense hair. The undersides of coyote toes and middle pads are bare of hair in all seasons, so the toe and pad impressions have smooth surfaces and crisp outlines.

Red fox left front track

In the middle pad of the red fox print there’s a curved indentation (vertically oriented in the photo) made by a ridge of tough skin that protrudes through the hair. This bar or chevron (present in the front foot and very rarely in the rear foot) is unique to the red fox and, when visible, separates it conclusively from the coyote. In the preceding photo of the coyote track you can see that the bar is absent.

Distinguishing coyotes from domestic dogs can be the toughest challenge. Dogs are so variable that there aren’t any absolute criteria, and many dog tracks are similar to coyote tracks in size. The photo below shows the rear (on the left) and front (on the right) prints of a coyote, oriented toward the right. As in most canines the rear track is smaller than the front. Note the absence of claw marks except for the delicate, closely set pricks ahead of the leading toes of the front foot. Both front and hind tracks are oval in overall outline, and their middle pads are small in relation to the overall track size.

Coyote rear (left) and front (right) tracks

Comparing those tracks with the dog tracks in the next photo, we see some clear differences. The front track of the dog (above) is more rounded and has a larger middle pad. The claw marks in the front print are more robust and are present ahead of all four toes. The rear print of the dog (below) is slimmer than the front but has a conspicuous middle pad, and there are claw marks ahead of all four toes.

Domestic dog front (above) and rear (below) tracks

Dog tracks like the front print below (oriented toward the top) are even easier to identify. The large middle pad and the thick claw marks are strong indicators, but the most striking feature is the spreading of the inner and outer toes. Many dogs have “floppy” feet. Because they are not as active their feet lack the muscle tone of wild canines, and their toes spread more. The inner and outer toes and claws may point to the sides rather than straight ahead. Dogs that get plenty of exercise, like the one that made the tracks in the preceding photo, may not show this spreading.

Dog front track

Varying conditions can affect the appearance of coyote tracks, and this is where things can get confusing. The coyote front track (facing to the right) in the next photo doesn’t look as neat and tight as the coyote tracks shown in previous photos. There are claw marks ahead of all four toes, the inner and outer toes aren’t as tightly tucked in behind the leading toes, and the claw marks are more divergent. This animal was trotting on soft, moist sand, so it allowed its toes to spread slightly for support. But the track still shows the small middle pad and the delicate claw marks that point toward coyote rather than dog.

Coyote front track from side trot

Faster movement can have an even greater effect on tracks. The print shown below (a front, pointing toward the right) was made by a galloping coyote. The toes are spread, the claw marks are deep, and the middle pad looks asymmetrical. But even this track shows coyote rather than dog features. The claws are sharply pointed and the middle pad is small compared to the overall track size.

Coyote front track from gallop

There will always be times when making a firm identification is difficult. The tracks may be distorted or degraded, or there may only be partial tracks. But even if we can only come to a tentative conclusion, we can still observe and learn as much as possible. And the more we struggle with challenging situations, the better we will be at knowing coyote tracks when we see them.

Streamside Discoveries

As the high water levels of late winter and early spring subside, stream and lake margins become interesting tracking locations. Water is a magnet for wildlife, and visiting creatures leave the evidence of their activities along the shoreline. A great blue heron left the collection of tracks shown in the photo below. The feet of herons resemble the feet of songbirds, with one backward-pointing toe and three forward-pointing toes. But unlike most songbirds, the toes of herons don’t all meet at one point. There’s a left print (facing toward the lower right) in the upper left corner of the photo that shows this nicely. The junction between the backward-pointing toe and the inner forward-pointing toe lies to the left of the intersection between the two outer toes. Another way of saying this is that the two outer forward-pointing toes join a little to the outside of the center of the foot. The same asymmetry shows in the right track in the lower right corner.

The spotted sandpiper is another bird that patrols stream and lake margins. These small birds–about the size of a starling–search for invertebrates on the edges of streams, ponds, marshes, and other bodies of fresh water. Their tracks (shown in the next photo) reflect their erratic and meandering movements. The three forward-pointing toes are relatively symmetrical and diverge at wide angles. On the back of the foot there’s short spur oriented to the inside that may or may not make an impression in tracks. The left print just below the stick in the upper right corner shows the spur nicely.

Raccoons prefer comfortable surfaces so it’s no accident that the animal that left the tracks shown in the photo below stepped along a soft deposit of sand left by a recent flood. The raccoon moved from the upper right to the lower left, leaving tracks in the sequence right rear, left front, left rear, right front. The difference between the wider but tighter rear track and the narrower, more spreading front track is easily seen in the set of prints at the upper right. Raccoons habitually work the edges of streams and ponds where they find tasty shellfish, frogs, crayfish and other invertebrates. The pattern of alternating sets of hind and front tracks from opposite sides tells us the animal was moving at a pace-walk.

Mink are also in the habit of travelling along the margins of water bodies. The animal that made the tracks in the next photo was moving from right to left at a lope, and the track sequence is right front, right rear, left front, left rear. Like raccoons, mink have five toes on both front and rear feet, but it’s not uncommon for the impression of the inner toe to be missing. In fact the only print in the photo that shows a clear inner toe is the left front. This track also shows the middle pad protuberances (just behind the toes) and the heel pad (the small indentation behind the middle pad). Mink share a taste for crayfish, frogs and invertebrates with raccoons, and occasionally catch small fish. They’re adaptable predators and may also hunt for small mammals on the surrounding land.

The mink’s larger relative, the river otter, also leaves its tracks along the edges of ponds and streams, but for this creature it’s mainly a matter of convenient travel between feeding areas. I found the tracks in the photo below on the inside of a bend in a stream where an otter had taken a short cut across a large sandbar. The sequence of tracks is the same as that of the mink tracks in the previous image, and the family resemblance–both mink and otters are mustelids–can be seen in spite of the different substrates. Otters are more aquatic than mink and capture most of their food in the water.

When they’re not foraging in the water otters spend their time on conveniently accessed sites near the water. They roll on soft surfaces like grass and forest duff to clean and dry their fur, and they socialize with other members of their family group. They also leave notices in the form of scat to non-resident otters that the territory is occupied. The otter scat in the photo below contains crayfish shell fragments, but it’s also common to find scats containing fish scales and bones, or the slimy remains of frogs. Otters often use latrines where scat of various ages and contents can be found.

The beaver is another very aquatic mammal. In the photo below you see two beaver tracks, a right front (above) and a right rear (below), both facing toward the right. In the front track the four toes show clearly and the two heel pads appear as elongated grooves because the foot slipped in the mud. In the bottom part of the frame the three outer toes of the hind print show clearly but the two inner toes are obscured by the front print. As is often the case, the webbing of the hind foot doesn’t show. The size difference between the front and rear tracks is striking and helps us to understand why beavers are such strong swimmers. Beavers feed on the leaves, bark, and stems of woody plants year-round, but during the growing season the diet also includes aquatic plants, cattails, sedges, and forbs. Their tracks usually lead between the water and foraging sites on land, and signs of branches being dragged into the water are common.

Smaller–but just as well adapted to life in water–is the muskrat. Like the beaver, the muskrat has rear feet that are much larger than the front. In the photo below, the track farthest to the left is the right rear, and just to its right you see the right front. On the right side of the frame the left rear lies below the left front. Notice that the small inside toes of the front feet made impressions in both of the front prints. The muskrat’s front feet, like those of the beaver, are adapted for handling food items and building materials rather than for swimming.

If you wander along shorelines you may find muskrat latrines. These sites are usually located on logs or rocks that lie in the water but protrude above water level. In the next photo you can see a rock decorated with scat of varying ages, deposited as an announcement that the territory is occupied. Although muskrats occasionally consume animal foods they are primarily plant eaters, and their scats usually contain fibrous material.

This is just a sampling of some of the wonders to be found along the margins of lakes, streams, and marshes. There’s always something to be discovered, so next time you’re out and about, take a detour to check a stream edge or a muddy shoreline. Better yet–if you don’t mind some wading–try a stream walk. It could be just the thing on a summer day.

Mud, Glorious Mud!

Unlike many people I know, I’m always sad to see the snow disappear for good. But as soon as I think of what comes next–mud season–I get excited all over again. The transition between the seasons is highlighted in the photo below. A gray fox had stepped in some mud and then left it’s muddy footprints on the snow as it walked from left to right. Each deposit of mud is made by first the front and then the rear feet from the same side, and the zig-zag pattern of the walk shows nicely.

Once the snow is gone, ordinary mud takes its place as a medium for recording tracks. In the next photo an opossum stepped in some mud at the edge of a puddle, leaving a collection of both complete and partially obscured prints oriented toward the left. At the upper left there’s a right front track with a right rear track just behind it. Farther to the right you can see part of another right front track. In the lower right corner there’s a nearly complete left front print and just the suggestion of a left rear behind it. The front prints show the five widely spread toes that are characteristic of the opossum. In the front print at the upper left the segments of the semicircular middle pad are especially clear. The rear track in the upper center shows the strikingly different form of the opossum’s rear foot: a thumb-like inner toe pointing inward and four additional toes close together and pointing outward.

One of the nice things about mud is that it can record the presence of animals that we don’t encounter during the cold season. A spotted salamander (or maybe two of them) walked through the mud in the next photo. These amphibians hibernate in winter and come out in early spring, so mud season is a good time to look for their tacks. There are two trips: one going from the left side toward the upper right and the other proceeding from left to right along the lower part of the frame. Each trail consists of a central drag mark made by the tail and a sequence of front and rear prints on each side. The patterns of the prints tell us that the animal(s) were moving at an understep walk, with each rear foot touching down just behind the front foot from the same side. In the lower trail you can see the difference between the smaller, four-toed front prints and the larger, five-toed hind ones.

The tracks in the preceding photos are pretty obvious, but it’s not always easy to spot tracks in mud. In the photo below there’s a patch of shiny mud in the center of the shot, and on the right side of that patch there are some tire tread marks. If you look on the left side of the same shiny mud toward the top you’ll see a red fox track. The animal was moving from top to bottom, and because there weren’t many muddy spots the print in the photo was the only one I could find.

The close-up below shows the same track, but in this view it’s oriented in the opposite direction, toward the top. The central mound typical of canine tracks can be seen, and the marks made by the hair on the underside of the foot show clearly. There’s even a partial impression of the bar in the middle pad.

Woodchucks, like salamanders, spend the winter below ground and often emerge just as mud season is beginning. The next photo shows the left rear track of a woodchuck at the upper left and a left front track at the lower right. The five clawed toes of the rear print show clearly–the middle three toes set close together and the inner and outer toes angled toward the sides. Behind the toes you can see the four segments that make up the middle pad. In the front track the four toes with their substantial claws can be seen. The subdivided middle pad of the front foot lies behind the toes, and the heel pads show as two depressions behind the middle pad. The front print has a curvature toward the inside, a trait typical of the woodchuck.

It takes a medium with a fine texture to show details of the tracks of very small animals, and what better medium than mud? In the photo below you see the tracks of a white-footed mouse bounding from lower left to upper right. The tracks are arranged in the typical rodent bounding pattern–two rear prints (in the upper right quadrant) that are widely set and almost even with each other. Behind the rear tracks, the front prints are set more narrowly and, in this case, slightly staggered rather than even with each other. Track details show beautifully, especially in the left rear (the topmost track) and the left front (farthest to the left). If we compare these tracks with the woodchuck tracks above we see the rodent family resemblance, especially in the rear prints. The symmetrical mouse front tracks are more typical of other small rodents than the curved front prints of the woodchuck.

You can’t ask for a better rendition of detail than the porcupine tracks in the next photo. Porcupines have unique foot anatomy: their tough, undivided soles have a pebble-like texture that gives the animals good grip when climbing. The photo shows a left front print and, just behind it and overlapping slightly, a left rear print. The tracks are heading toward the left, and the texture of the soles shows beautifully. Because the leading edge of the rear foot touches the trailing edge of the front track, the two tracks seem to be joined together. You may be able to pick out the claw marks of the hind print along the leading edge of the sole of the front print. The four claws of the front foot made indentations at the very left, and if you look closely there are marks made by the three outer phalanges of the front foot behind the claw marks.

Once the snow melts and the weather warms, mud may not last long. Puddles may dry up and wet areas may fill in with plant growth. But mud can also appear in new places, and abundant rainfall can bring on new mud seasons long after the early one is over. As a matter of fact, I found the porcupine tracks in the photo above in the month of July. So keep an eye on the conditions of the puddles in your neighborhood, and don’t be surprised if you come across some beautiful mud when you least expect it.