Leafy Disturbances

Leaves: at this time of year the woody plants are bare of leaves, and last summer’s weather-beaten foliage covers the forest floor in all directions. Is there anything we can learn about the lives of animals from this seemingly mute carpet? The answer is a resounding yes! In the photo below we see a well-used deer trail. The dry, undisturbed leaves on either side contrast with the darker, disturbed texture in the trail. Even when it’s compressed, deciduous leaf litter is harder to walk on than pre-existing trails, so deer often create runs between bedding and feeding areas.

It’s not as easy to detect deer tracks if they’re not on well used trails. The next photo shows an individual deer track, orientated toward the right. The hoof pressed down into the leaf litter and the outer rims left curved depressions on the top layer of leaves. But if you just were hiking along, would this print attract your attention? Probably not. To find individual deer prints it helps to study areas where the animals have spread out from obvious trails into feeding or bedding areas.

Fall is mating season for whitetail deer, and back then the males were spending most of their time trying to attract females. Bucks made scrapes on the ground and left their scent at the site by depositing urine in the scrape. They also left their olfactory signature by rubbing their foreheads and faces on overhanging branches. The signs of these mating rituals often last into spring. In the photo below (taken a few weeks ago) you can see a scrape just below an overhanging branch still bearing a few leaves.

A close-up of the scrape has a weathered look but still shows signs of deliberate disturbance.

Deer aren’t the only animals that clear leaves. Turkeys sweep leaves aside as they search for insects and other edible tidbits beneath the leaf litter. In the photo below debris lies on top of the leaves at the bottom and lower right, showing that the turkey stood facing the upper left as it tossed the leaves backward. By using both of its feet the bird created a roughly triangular cleared patch.

But turkey feeding scrapes aren’t always triangular. In the next photo you see one that’s more irregularly shaped. There can be a lot of variation in the shape of the cleared area and the amount of displaced debris.

Buck scrapes and turkey scrapes can be quite similar, but there are ways to tell them apart. First, deer mate exclusively in the fall, so buck scrapes discovered in the spring will show signs of several months of weathering. Turkeys make feeding scrapes in all seasons, so at this time of year they range from fresh to weathered in appearance. Both of the turkey scrapes shown above are relatively recent, while the buck scrape in the preceding photos had been created about five months earlier.

Another difference between deer and turkey scrapes is their distribution. An individual buck usually makes a limited number of scrapes, almost always associated with overhanging branches, in an area he is patrolling. Turkeys usually feed in groups, and they go wherever the eating is good, so turkey scrapes are likely to be more numerous and scattered more irregularly.

Squirrels also disturb leaves. The next image shows a cleared area at the base of a tree. When I found this I wondered if it was the result of frequent use as a take-off spot by squirrels.

To check, I looked at the bark above the cleared spot (shown in the next photo) and saw that the moss and outer bark had indeed been abraded. I’m attributing this to squirrels, the most common tree climbers, but I can’t entirely eliminate the possibility that it was a raccoon. Other climbing animals are unlikely because they are less likely to climb one tree repeatedly.

Like turkeys, squirrels search for buried nuts and insects, especially in the spring when stored food supplies may have run out. Both red and gray squirrels obtain these items by digging small holes. In the next photo you see a dig made by a squirrel. Debris from the hole can be seen below and to the right, so the squirrel must have been facing the upper left as it dug.

Here’s another image of a squirrel dig, this time in a layer of pine needles. If the buried object was a nut or acorn the hole usually retains a firm impression of the object. In the digs shown in both photos the bottoms of the holes were loose and irregularly shaped, so the food items were probably insects.

Deer also dig at leaf litter in search of nuts and acorns. White oak acorns are consumed by many animals and birds, so they disappear soon after they drop. The higher levels of tannins in red oak acorns make them less palatable, so they mostly lie uneaten on the ground until soaking rains leach the tannins out. But once they’re more digestible red oak acorns are sought out by many animals, including deer. Where red oaks are the predominant oak species, areas of churned up leaves like those in the next photo (taken last December) can be found in late fall and winter. You can see fragments of acorn shells and meats the deer dropped as they chewed.

If there’s a heavy, wet snowpack in late winter that compresses the leaves, deer feeding areas may be hard to recognize by the time spring arrives. But after winters with little snow like the one we just had, the signs are evident. A few weeks ago I went back to the area where the photo above was taken to see what it looked like. In the photograph below you can see that the leaves still lie loosely in piles and windrows. There aren’t any acorn fragments to be seen–if the deer weren’t interested enough to gather them up they would have been eaten by other animals like squirrels, mice, raccoons, crows, foxes, or even fishers. You’re not likely to find fresh evidence of deer foraging for acorns because the fall crop has been mostly consumed.

Areas where the leaves were not churned up by deer (or turkeys) look very different. Fall rains and the little snow we did have were enough to flatten autumn’s leaf fall into a smooth-looking mat like the one pictured below.

Some places cleared of leaves are more mysterious . Is this the work of a deer? Or a turkey? Actually, neither.

When you see the same spot in the more distant shot shown below, you’ll see what moved the leaves: water. The close-up above comes from the area in the lower left quadrant of the distance shot below. During a heavy rain, water flowed down the trail on the right and spilled over the edge into the leaves. As the water rushed downhill it made channels in the leaves and moved them into heaps along the edges.

Leaves have stories to tell, and to understand them we need to get familiar with undisturbed leaf litter. Once we begin to pay attention to leaves, and to places that depart from the unaltered baseline, we’ll have a whole new window into the lives of animals.

Animal Artists

Nature is the original artist. Whether it’s the pattern of ice crystals in a frozen stream or a flock of birds wheeling together in the sky, we’re surrounded by striking compositions. And animal tracks are no exception. I’ve been photographing these works of art over the years, and I’d like to share some of my finds with you. For each one I’ll also include my deductions and speculations on how it came to be.

Those are mouse trails (deer mouse or white-footed mouse) that seem to pour out of the upper right corner of the photo below. In each trail the deeper landing spots are connected by lighter tail marks. The indistinct trail farthest to the right is older than most of the others. To the left of that one is a trail (superimposed on another older one) that looks like it is heading uphill, based on the shorter jumps and the angles of the tracks. The next one to the left (mostly centered in the photo) seems to be a single passage, and a few tail marks that go to the side (check out the small mark above the lowermost landing spot) tell me that the mouse was going downhill. The trails farther to the left are combinations of at least two passages, and it’s hard to say which way the animals were going. All of the trails radiate from a depression in the snow next to a tree trunk at the upper right of the photo. Openings like this allow access to spaces under the snow pack which are crucial for the winter survival of small animals.

The tracks pictured below were made in a warmer season. A toad walked through the mud and left some natural calligraphy. The direction of travel is from right to left, and the front tracks, with their four toes oriented inward, lie inside the rear ones. The curved lines were made as the trailing toes of the front feet occasionally dragged through the mud as they touched down. Toads often seem to walk on the tips of their rear toes, which is why the hind tracks look like curved rows of dots. The difference between the front and hind prints is best seen in the tracks from the left side (the lower ones) where there’s more separation between the two. At the extreme left there are two left rear tracks near one left front. It looks like the toad put its rear foot down lightly, picked it up and put it down more firmly nearer to the front print.

If you’re having trouble picturing how the feet of a toad could be positioned to make tracks like these, this photo of an American toad might help.

Photo by the National Park Service

Snakes can also produce artistic creations. A garter snake made the designs in the sand shown below. The sinuous trail near the stones was made by simple forward movement toward the upper left. You can see several places where the tail must have lifted and the back end moved slightly sideways, leaving a ridge outside of the main groove. It’s harder to figure out what happened in the lower half of the photo. The wider flattened areas suggest sideways movement, almost as if the snake was having a good stretch. Do snakes do that?

Meadow voles bulldozing their way through shallow snow made the next work of art. You can see tiny tracks in the grooves, too many to have been made by just one passage. Tail marks show in a few places. The haphazard nature of the voles’ travel suggests they were searching for something edible, seeds perhaps.

A crow is the featured artist in the next photo. The bird landed at the lower center and walked toward the deep hole just above center. It must have dug around there, maybe in search of some edible item. (Or did it already have something that it put down and manipulated there?) It then turned to the right and took off, leaving a tail mark to the left of the hole and a pair of nearly symmetrical wing marks to the right. (If it had been landing instead, the wing marks would be next to or to the left of the hole.) There are some additional feather marks in the photo that are harder to figure out. The ones in the lower right corner that seem to drag down to the left may have been made when the crow landed. Just above those there’s another set of wing marks, and there are two more on the left side of the frame, one above and another below the tail mark. These are more of a puzzle, since they don’t seem to be connected with the landing or the take-off. Maybe the crow swooped around before it actually landed, or maybe another crow was harassing it.

I’ve saved my favorite one, a red fox track decorated with ice crystals, for the very last. This is an interesting phenomenon that occurs during very cold weather. When the track was made it would have looked normal, with a thin floor of compressed snow bordered by low walls of snow. After the fox stepped there the temperature stayed cold so the soil beneath the track, although frozen, was warmer than the air above. The warmth at ground level caused ice in the ground and the snow in the floor of the track to undergo sublimation and recrystallization. Water molecules became detached and formed water vapor, which moved upward and formed new ice crystals in the colder air just above. Since this was a slow process the new crystals had time to get much larger than the crystals in the original snow.

This same process gradually transforms solid snow at the bottom of a deep snow pack into a warren of tunnels and chambers. Remember the mouse trails in the first photo? The trails connected to an opening which gave the mice access to spaces under the snow pack created in the same way as the crystals in the fox track, by sublimation and recrystallization. You can read more about this process, called constructive metamorphosis, here.

Natural art is all around us, and expressed within this beauty are the lives and relationships of living things and the physical world they live in. It’s certainly possible to appreciate the art of nature on its own, without any deeper analysis. And if that is your inclination I encourage you to simply be open and drink in natural beauty whenever you can. But for me, understanding how nature works adds much more to my experiences of natural art. For instance, when I look at a track filled with ice crystals I both marvel at the delicate design and imagine how that design was created by water molecules drifting up from below and attaching to crystals at higher levels. I revel in both the beauty and the finely tuned interactions that produce it.